O,

Persistence Homological Statistical
Summaries for Ligand-Based Virtual
Screening

Aras Asaad (PhD)
Joint work with Dr. Richard Cooper and Prof. Paul Finn

Methods Development Team,
Oxford Drug Design, Oxford, UK.



3D based Molecule Representation O,

Super-positional methods:  Non Super-positional methods:

v' ROCS v’ Electroshape (Oxford Uni. / Oxford Drug Design)

v’ Brutus v' USR-CAT (Cambridge Uni.)

v EON v Whales (Weighted Holistic Atom Localization and Entity Shape) —
v Phase-Shape Zurich/Milan.

v’ Shape-it v MOLSG & E-MOLSG — Sheffield Uni.

v Align-it v" RGMOoISA & KQMOoISA ( based on RIEMANNIAN GEOMETRY) -
v ShaEp Newcastle Uni. |

Vv SHAFTS v' Morse-Theory based (In progress- Oxford Uni.)

/' WEGA v'TDA (Topological Data Analysis)

v LIGSIFT

v LS-Align

v ESPsim ... etc



Outline C.’)
« Topological DataAnalysis. Brief introduction.

« Featurising the space of Persistence Barcodes. Statistical Summaries.
« Ligand based virtual screening

* Resultsusing Internal and DUD-E datasets

« Comparison with state-of-the-art (SOTA)

 Future Research Directions



Topological Data Analysis

Persistent Homology

Algebraic Topology

Mapper Algorithm

A Original Point Cloud A) Data Set

Example: Point cloud data
representing a hand.

i B) Function f: DataSet - R

i fi(x,y2)2x

Example: x-coordinate

C Binning by filter val i ing bi
e C) Put data into overlapping bins.

Tk
«=z ' Example: f%(a, by)

D Cluserngandnenvorkconsncton. )~ Clyster each bin & create network.
Vertex = a cluster of a bin.

Edge = nonempty intersection

between clusters
http://www.nature.com/sren/2013/130207/srep01236/full /srep01236.html




Algebraic Topology == Persistent Homology 2

Algebraic Topology 1s a collection of tools from Abstract Algebra
( Groups, Rings, Fields, Ideals ... etc) used to study algebraic invariants
of topological spaces (up to homotopy equivalent).
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Algebraic Topology === Persistent Homology O,
T

Topology is a field of Mathematics concerned with studying characteristics of shapes in terms of
connectivity and closeness, using a combinatorial process known as simplicial complexes.

The main tool in algebraic topology we use is called homology.

Homology uses simplicial complexes to measure topological properties of spaces such as
number of connected pieces, number of holes/loops, number of cavities ...etc.



Simplicial Complexes === (SC) Homology 0,

7

Consider V = {v,, vy, ..., v, } to be the set of vertices. A SC with a vertex set V is a

collection S of subsets of V whereby the following two conditions satisfied:
e The singleton {v} € S, where v € V. o ® ®

¢ Let TE S and ogcC T$ then o€ S' 0-simplex 1-simplex 2-simplex 3-simplex

For each integer k = 0, the boundary operator defines a linear transformation g, . @, (S) = Ci_; (S)
Then, we can define a sequence of homeomorphism of abelian groups (i.e. chain complex) as follows:

Ok+1

Ok Ok-1 09 01 9o
w Cry1(8) — C () 9 C—1 (S) — ... — G (S) — €y (S) — 0.

Finally, we can define the k-th homology group of S by the quotient vector space as follows: Hk (S) — ker(ak) /]m(ak_l_l)

Dimensions of the homology groups are known as Betti numbers : B, (S) = dim(Hk (S) = dim(](er(ak)) — dim(Im(ak_l_l))

Betti numbers of dimension zero = By = connected Components
Betti numbers of dimension one = B; = loops / holes.
Betti numbers of dimension two = B, = Cavities/Voids



How to build SCs from Data?




How to build SCs from Data?

Idea: Consider a series of distances thresholds and analyse pattern of
change in the topology of the corresponding SCs as thresholds increase,
known as Persistent Homology.



1

0

Persistent Homology

Consider the sequence (SC;) of simplicial complexes associated to a
point cloud for a sequence of distance values:

> SCZ C > SC3

730




Persistent Homology @

11

Consider a sequence of nested simplicial complexes (SC;) associated to
a point cloud for a sequence of distance values:

. 6SC; © SC, © SC; © SCy, © SCe © SCo & SC; & -+

This sequence of complexes, with maps, is a filtration of the final SC.
Note the change of connected components & holes (Top. Invariants)







Persistent Homology: Barcodes & Persistent Diagram Representations @

Death
(o]o)
@

Birth




Building Persistent Homological Features from Molecules O,

14

ilfenprodil (52 atoms,(21C, 1N,20,28H)).
Vertices are atoms and the line segments constructed based on the distance between
co-ordinates of atoms. Here, the distance threshold T=1.6.

-------------

6 s
44444444444444



Building Persistent Topological Features from Molecules O,

15

Input Point Cloud

v" 3D atom coordinates,

v" 4D (3D + Partial Charges)
v 5D (4D + lipophilicity)
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Persistent 0-D homology
Features

i.e. Connected
Components

Persistent 1-D homology
Features
i.e. 1-D loops/holes

w
’ ..
_-l.

Persistent 2-D homology
Features
i.e. 2-D Cavities/Voids



Building Persistent Topological/Homological Features from Molecules (D
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Molecule-C
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onformer: Persistent Barcode Visualizations
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How to Use Persistence Barcodes to differentiate
Ligands from Decoys!



How to Vectorise the Space of Persistence Barcodes? ®

Search...

= I‘(lv > math > arXiv:2212.09703

Mathematics > Algebraic Topology

[Submitted on 19 Dec 2022]

A Survey of Vectorization Methods in Topological Data Analysis

- Dashti Ali, Aras Asaad, Maria-Jose Jimenez, Vidit Nanda, Eduardo Paluzo-Hidalgo, Manuel Soriano-Trigueros

Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for
vectorizing persistent homology barcodes. In this paper, we study thirteen such methods. Besides describing an organizational framework
for these methods, we comprehensively benchmark them against three well-known classification tasks. Surprisingly, we discover that the
best-performing method is a simple vectorization, which consists only of a few elementary summary statistics. Finally, we provide a
convenient web application which has been designed to facilitate exploration and experimentation with various vectorization methods.

Subjects: Algebraic Topology (math.AT)

Cite as: arXiv:2212.09703 [math.AT]
(or arXiv:2212.09703v1 [math.AT] for this version)
https://doi.org/10.48550/arXiv.2212.09703 €@
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Submission history
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Dataset, Performance Metrics and ML @

e DUD-E dataset:

e We used all 102 DUD-E targets.
«  Conformers generated using an internal ODD pipeline.

. Minimum Energy conformer used in our experiments.

* Internal Dataset:
e  Protein target: leucyl-tRNA synthetase
. Number of Active molecules: 208
e  Number of Inactive Molecules: 248

e Performance Metrics:
. Enrichment Factor at 1%.

 Hit-Rate ( also known as relative Enrichment Factor at 1%)
e Areaunder the ROC-curve (AUC).

e Machine Learning:

. Light-GBM classifier with optimizing hyperparameters
e  Stratified 5 fold cross validation to partition the training and Testing.



Results From Internal Dataset



ODD Internal Results @

ODD Data (Mean ROC curve with variability)

1.0 -
AUC 1% EF Hit-Rate %
Fold 1 0.73 2.19 100
Fold 2 0.75 2.17 100 0.8 1
Fold 3 0.66 2.17 100
Fold 4 0.81 2.22 100 g o
Fold 5 0.78 2.21 100 ; ' |
Average 0.75 2.12 100 3 |
STDEV 0.05 0.024 0 So0aq | |
= Az 7 ROC fold 1 (AUC = 0.73)
| S ROC fold 2 (AUC = 0.75)
, ,/ ROC fold 3 (AUC = 0.66)
024 # ROC fold 4 (AUC = 0.81)
| A% ROC fold 5 (AUC = 0.78)
,/ -== chance level (AUC = 0.5)
- Mean ROC (AUC = 0.75 % 0.05)
0.0 A + 1 std. dev.
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate



Results From DUD-E dataset



The Input: 5D atom Positions, Metric: | % Enrichment Factor @

—— Input: 5D Atom postions of Molecules for 102 DUDE Targets
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The Input: 5D atom Positions, Metric: Hit-Rate (HR) @

— Input: 5D Atom postions of Molecules for 102 DUDE Targets

100 [~ //\\4'/\A /\ /\—/\/\/_/\/\/‘/\ A o

o
0 2
E 80 -
(7))
K / \
S 70
S > CP2C9 FXK4
g KITH
- v > NOS1 PGH2
2 | PUR2
i PYGM
50 - s epand RXRA
}\\\\\§S> SAHH
TGFR1
40 |/
/ ACFB WEE1
XIAP
30 | | | | | | | l | |
0 10 20 30 40 50 60 70 80 90 100

DUDE Targets



Comparing with Literature Results O

i* frontiers ORIGINAL RESEARCH

. published: 19 February 2020
mn Pharmacology doi: 10.3389/fphar.2019.01675

Applying Machine Learning to
Ultrafast Shape Recognition in
Ligand-Based Virtual Screening

Etienne Bonanno' and Jean-Paul Ebejer®”

T Department of Artificial Intelligence, University of Malta, Msida, Malta, 2 Centre for Molecular Medicine and Biobanking,
University of Malta, Msida, Malta

» 38 DUD-E targets used.

» Three Machine Learning classifiers used: Gaussian Mixture Models, Isolation-Forest and Neural
Networks (ANN).

» 5 fold cross validation used ( 4 folds to optimize hyperparameters and used for the testing partition
in each round)

» 1% Enrichment Factor used as a performance metric ( as well as ROC-AUC).



Comparing TDA with Literature (Bonanno & Ebejer paper) (@)
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Conclusion and Future Research Directions O

v’ Persistent Homology is a novel method to represent molecules in the form of persistence
barcodes which encodes both global topological features as well as geometrical features.

v’ Persistence Homological Statistical Summary is an effective featurisation approach to use
Persistence barcodes with machine learning.

v Persistence Statistics is a state-of-the-art ligand based virtual screening method tested on
DUD-E, MUV and also validated on in-house antimicrobial drug design project.

Future Research direction:
1- Multi-parameter persistent Homology.

2- Incorporating protein information together with ligand topological features to improve the
activity prediction.



Thank You for Your Attention!
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5FCV Average + STD EF
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The Input: 3D atom Positions, Metric: | % Enrichment Factor

Input: 3D Atom postions of Molecules for 102 DUDE Targets
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5FCV Average + STD EF

The Input: 4D atom Positions, Metric: | % Enrichment Factor

— Input: 4D Atom postions of Molecules for 102 DUDE Targets
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5FCV Average + STD EF
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Input: 3D, 4D & 5D Atom postions of Molecules for 102 DUDE Targets
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5FCV Average + STD HR

The Input: 3D atom Positions, Metric: Hit-Rate (HR)

— Input: 3D Atom postions of Molecules for 102 DUDE Targets
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5FCV Average + STD HR

The Input: 4D atom Positions, Metric: Hit-Rate (HR) (_))

— Input: 4D Atom postions of Molecules for 102 DUDE Targets
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5FCV Average + STD HR

The Input: 3D,4D,5D atom Positions, Metric: Hit-Rate (HR)

Input: 3D, 4D & 5D Atom postions of Molecules for 102 DUDE Targets
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Results on Testing on MUV Dataset @

Comparing to the work of Tiikkainen et al. (J. Chem. Inf. Model. 2009, 49, 2168-2178)

MUV-AUC PersStats ROCS BRUTUS EON
Average 0.6839 0.5771 0.5129 0.542
STDEV 0.10 0.08 0.08 0.07

MUYV Dataset:
The data set comprises confirmed active molecules and decoys for 17 target classes.

For each target class there are 30 active molecules and 15,000 decoys.

*Authors of the MUV data set had chosen the active molecules so that they occupy different areas of chemical space as defined
with simple chemical properties such as heavy atom count and hydrogen bond donors and acceptors. In contrast, decoys

that resemble the active molecules with respect to these simple properties were chosen. This process led to data sets
where active molecules cannot be separated from decoys using simple properties



