DrugEx: deep learning for *de novo* drug design – A case for A2B selective ligands –

Ninth Joint Sheffield Conference on Chemoinformatics

Sohvi Luukkonen, M. Sícho, L. Schoenmaker, H.W. van den Maagdenberg, O. Béquignon, J. Madern, D. Van der Es, G.J.P. Van Westen

de novo Drug Design

Chemical space of drug-like compounds

- $\sim 10^8$ synthesized molecule
- ~10³³-10⁶⁰ estimated drug-like molecules

A good candidate fulfills multiple properties

- Maximize affinity, efficiency, synthezability, drug-likeness
- Minimize off-target effect, toxicity
 - \Rightarrow a multi-objective optimization problem

Liu et al. (2021) *Methods Mol. Bio.* Luukkonen et al. (2023) *Curr. Opin. Struct. Biol.*; Former and Coley (2023) *Patterns*

DrugEx - the Evolution of the Drug Explorer

DrugEx v1.0 RNN-based (GRU) single-objective RL (SMILES)

An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor, **2019**, J. Cheminf.

By Xuhan Liu

DrugEx v2.0 RNN-based (LSTM) multi-objective RL (SMILES)

DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology, **2021**, J. Cheminf.

By Xuhan Liu

DrugEx v3.0 Transformer-based multi-objective RL (SMILES/Graph)

DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning, **2023**, J. Cheminf.

By Xuhan Liu

DrugEx (v3.4.4)

open-source software library for *de novo* design of small molecules with deep learning generative models in a multi-objective reinforcement learning framework

DrugEx: Deep Learning Models and Tools for Exploration of Drug-like Chemical Space, 2023, J. Chem. Inf. Model.

By DrugEx dev team @ CDD Leiden

DrugEx - the Workflow

DrugEx - 3 Flavors: Sequence RNN

DrugEx - 3 Flavors: Transformers

Discover the world at Leiden University

Liu et al. (2023) J. Cheminf.; Šícho et al. (2023) J. Chem. Inf. Model.; Degen et al. (2008) ChemMedChem; Lewell et al. (1998) J. Chem. Inf. Comput. Sci.

DrugEx - 3 Flavors: Sequence Transformer

DrugEx - 3 Flavors: Graph Transformer

DrugEx - the Workflow

DrugEx - Pretraining & Finetuning

Finetuning / transfer learning

DrugEx - Reinforcement Learning

Exploitation-exploration strategy

*PT or FT

DrugEx - the Environment

Objectives

- Over 20 predefined properties
 - PhysChem MW, logP, QED, TPSA ...
 - Similarity Tversky, Fraggle & substructure
 - Synthetic accessibility SA, RA & LED3*
 - Efficiency Ligand & Lipophilic
- QSPR models from QSPRpred**
- Custom scorers with the API

Multiobjective optimisation

- Scalarization
 - Dynamic/parametric weighted sum WS
- Pareto ranking with
 - Crowding distance (NSGA-II) PRCW
 - Tanimoto distance PRTD
- Custom methods with the API

Modifiers

All objectives need to be maximisation tasks and scaled between 0 and 1

10 predefined modifiers

• Custom modifiers with the API

*Posters by M. Šícho and A.H. Kai **Presentation by H.W. van den Maagdenberg

> Deb et al. (2002) IEEE Xplore Liu et al (2021) J. Cheminf. 14

DrugEx - the Workflow

DrugEx - Three interfaces

A Python package with an application programming interface (API)

@ github.com/CDDLeiden/DrugEx

Command line interface (CLI)

Graphical user interface (GenUI)

@ github.com/martin-sicho/genui-gui

...

DrugEx - Getting Started

Application note

DrugEx: Deep Learning Models and Tools for Exploration of Drug-Like Chemical Space

Martin Šícho, Sohvi Luukkonen, Helle W. van den Maagdenberg, Linde Schoenmaker, Olivier J. M. Béquignon, and Gerard J. P. van Westen*

Documentation

₩ DrugEx v3.4.4	* » Welcome
rch docs	
NTENTS:	Welcome
lcome	DrugEx is a collection of deep learning models for directed generation of molecules. Here you wil
allation	find the installation guide (Installation), usage examples (Usage) and API documentation (DrugEx
ge	Python API).
Example	Contents:
IgEx Python API	
	Welcome
	Installation
	• Usage
	CLI Example
	• Basics
	Advanced
	DrugEx Python API
	 drugex package

Tutorials (API & CLI)

Data Preparation

In this tutorial, we assume you already extracted the required data and models with the download utility as described in the README file. They should be located in the data directory in the current folder:

import os

os.listdir('data')

['models', 'logs', 'download.json', 'datasets', 'download.log']

We will only be preparing a fine-tuned model in this tutorial so we just need one data set that closely relates to our target of interest, which is the adenosine A2A receptor (A2AR) in this case. Data about ligands extracted from the Papyrus dataset is saved in the following folder:

DATASETS_PATH = 'data/data'

os.listdir(DATASETS_PATH)

['encoded', 'qsar', '.Papyrus', 'A2AR_LIGANDS.tsv']

Lets take a look at the data set file itself:

Recurrent neural network

The most simple model is the RNN-based generator. This model gets the 'go' token as input and from there generates SMILES strings. Therefore, this model does not use input fragments for training or sampling. To preprocess the data for training an RNN-based generator the molecules are standardized and encoded based on the vocabulary of the pretrained model vf
Papyrus05.5_smiles_voc.txt, but no fragmentation is done _nof. To fine-tune an RNN-based
generator on the A2AR set, the algorithm needs to be specified _a rnn. Here the generator is fine-tuned on the A2AR set and then used to generate new compounds.

python -m drugex.dataset -b \${BASE_DIR} -i A2AR_LIGANDS.tsv -mc SMILES -o rnn-example -nof -vf Papyrus0! python -m drugex.train -tm FT -b \${BASE_DIR} -i rnn-example -ag \${BASE_DIR}/models/pretrained/smiles-rnr python -m drugex.generate -b \${BASE_DIR} -g rnn-example_smiles_rnn_FT -vfs Papyrus05.5_smiles_voc.txt -{

A case for Adenosine A2B receptor selective ligands

Adenosine A2B Receptor

4 Adenosine receptors (ARs) - A1, A2A, A2B and A3

- Class A GPCRs
- Endogenous ligand: adenosine
- Known antagonists: xanthine-derivatives (caffeine)
- Conserved binding sites
- Situated in different organs varied functions
- Adenosine A2B receptor (A_{A2B}R)
- Lower affinity to adenosine than other ARs
- Activation linked to hallmarks of cancer > Interesting to selectively inhibit
- Known antagonist scaffolds with some selectivity

Sun and Hugan (2016) Front. Chem. Eastwood et al. (2023) ACS Med. Chem. Lett.; Basu et al. (2017) Eur. J. Med. Chem.

AR data

QSAR Models for ARs with QSPRpred

Random forest regressors

 \Rightarrow Filtering of *de novo* compounds

	A _{A1} R	A _{A2A} R	A _{A2B} R	A _{A3} R
RMSE	.68 (.04) .64	.68 (.02) .67	.60 (.03) .60	.67 (.04) .74
R^2	.55 (.04) .52	.69 (.01) .54	.69 (.03) .52	.66 (.03) .54
ρ	.76 (.02) .69	.84 (.01) .73	.84 (.02) .70	.82 (.02) .76

Creating the Environment

Training the Generator

1st try* - Generation & Experimental Results

10 000 generated molecules

 \Rightarrow 3 791 novel unique desired compounds

CHO-hA_{2B} at 10 μg/25μl, 1.5 nM [3H]PSB-603, 25[°]C ligands at 10 μM

Top 10 compounds (average score)

Top 3 compounds overall Top 3 tri-substituted compounds

> *Differences in workflow Finetuning: AR active compounds QSAR: less well optimised model Extra objective: MW (200-500 Da) Early stopping: mean score

Ligand-based Filtering

Ranking: a geometric mean between AA2BR activity and selectivity

Structure-based Filtering

Docking

- 184 compounds
- A_{A2A}R 4EIY
- A_{A2B}R AlphaFold inactive model from GPCRdb

 π -stacking with Phe173 + 2 H-bonds with Asn254

 π -stacking with Phe173

+ 1 H-bond with Asn254

Missing π -stacking with Phe173 / H-bond with Asn254 / both

Reference compound: ZMA241385

Molecular Dynamics

21 A_{A2B}R complexes (A_{A2A}R: 5/11/4)

ACY - acyclic HAR - heteroaryl

Conclusions & Perspectives

DrugEx - a production-ready open-source software library for *de novo* design of small molecules with deep learning generative models in a multi-objective reinforcement learning framework

Perspectives

- MOO with uncertainty quantification
- Many-objective optimization
- Scorers based on docking/pharmacophores

Design of A2B selective ligands

- First results were disappointing \rightarrow to be smarter!
- Second try + ligand- and structure-based \rightarrow better selection of compounds

Next step: continue synthesis and validation of pyrazineamine (xanthine and scaffoldless) series

Aknowledgements

DrugEx dev team Martin Šícho, Helle van den Maadenberg, Linde Schoenmaker, Olivier Béquignon & Xuhan Liu

CDD Leiden

Rosalie Drinkwaard, Willem Jespers & Gerard van Westen

DDS4 team Jerre Madern, Rongfang Lie & Daan van der Es

Contraction of the second seco

DrugEx: deep learning for *de novo* drug design – A case for A2B selective ligands –

Ninth Joint Sheffield Conference on Chemoinformatics

DrugEx RNN architecture

DrugEx GraphTransformer statistics (exploration)

 Table 2: the performance of the Graph Transformer with different exploration rates in the RL framework.

3	Accuracy	Desirability	Uniqueness	Diversity
0.0	99.7%	74.6%	60.7%	0.879
0.1	99.7%	66.8%	75.0%	0.842
0.2	99.8%	61.6%	80.2%	0.879
0.3	99.7%	56.8%	89.8%	0.874
0.4	99.7%	54.8%	88.8%	0.859
0.5	99.7%	46.8%	88.5%	0.875

DrugEx Pretrained model statistics

Model Type	Training set	Fragmentation method	Validity	Accuracy	Uniqueness	Novelty	Relative sam- pling time	Ref.
SMILES GRU RNN	ChEMBL (v31)	-	1.000	-	0.996	0.999	0.705 ± 0.049	7
SMILES GRU RNN	Papyrus (v05.5)	-	1.000	-	0.992	0.999	0.706 ± 0.052	8
SMILES LSTM RNN	ChEMBL (v27)	-	0.999	-	0.600	0.865	1.000 ± 0.000	9
SMILES LSTM RNN	ChEMBL (v31)	-	1.000	-	0.994	0.999	0.470 ± 0.038	10
SMILES LSTM RNN	Papyrus (v05.5)	-	1.000	-	0.988	0.998	0.474 ± 0.050	11
SMILES transformer	Papyrus (v05.5)	BRICS	0.947	0.622	0.591	0.995	86.628 ± 50.843	12
SMILES transformer	Papyrus (v05.5)	RECAP	0.963	0.675	0.649	0.996	86.376 ± 50.629	13
Graph transformer	ChEMBL (v27)	BRICS	1.000	0.796	0.791	1.000	23.292±10.249	14
Graph transformer	ChEMBL (v31)	BRICS	1.000	0.786	0.775	1.000	25.253 ± 10.373	15
Graph transformer	Papyrus (v05.5)	BRICS	1.000	0.762	0.751	1.000	24.694 ± 10.270	16
Graph transformer	Papyrus (v05.5)	RECAP	1.000	0.814	0.810	1.000	24.843±10.378	17

DrugEx Pretrained model distributions

