Coverage Score: A Model Agnostic Method to Efficiently Explore Chemical Space

Dan Woodward

Senior Cheminformatics Research Scientist

19 June 2023 Ninth Joint Sheffield Conference on Chemoinformatics

doi/10.1021/acs.jcim.2c00258

Outline

Active learning in drug discovery

• Why is it useful?

Query strategies

• How to select molecules?

Coverage Score

• How does it work?

Validation

• How does Coverage Score perform?

Further work/summary

• Where do we go from here?

Outline

Active learning in drug discoveryWhy is it useful?

Query strategies

• How to select molecules?

Coverage Score

• How does it work?

Validation

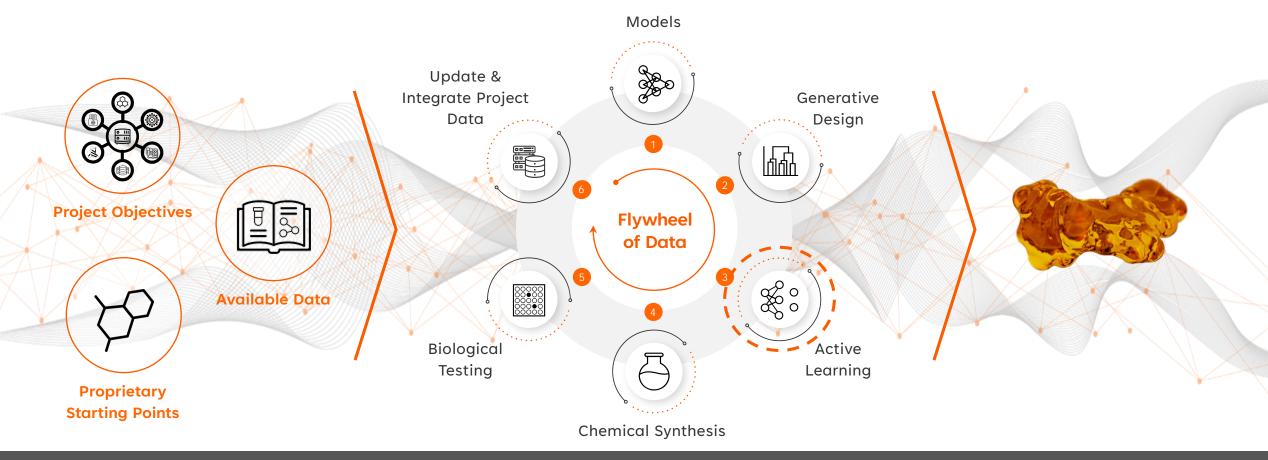
• How does Coverage Score perform?

Further work/summary

• Where do we go from here?

AI-driven design to generate candidate drugs

Drug discovery is a learning problem



Small numbers of compounds per design cycle

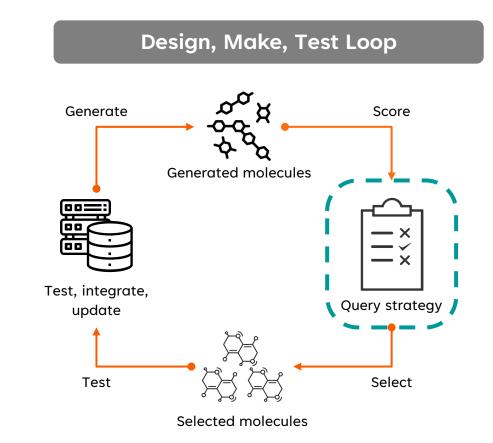
Why can't we just screen molecules?

- Druggable chemical space is huge! (~10⁶⁰)¹
- Slow and costly to synthesise and assay molecules
- Comparatively cheap and fast to run predictive models
- Low data regime, predictive models less accurate
- Iteratively decide which molecules are 'best' to test

		þ
م م م م	800 800 800 800 800 800 800 800 800 800	4 8 ×
	ς γ _α γαζ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Active learning

- Selecting highly scoring molecules exploits what model already knows (minimal information gain)
- Improve model predictions learn
 efficiently
- More accurate predictions **earlier**, better decisions, **faster** time to candidate
- Query strategies can be data- or model-dependent



Outline

Active learning in drug discoveryWhy is it useful?

Query strategies

• How to select molecules?

Coverage Score

• How does it work?

Validation

• How does Coverage Score perform?

Further work/summary

• Where do we go from here?

Query strategy comparison

• Dataset

- x = molecules from GSK MMP12 set (similar) and ChEMBL (dissimilar)
- y = experimentally determined pIC₅₀ values for MMP12
- Data-dependent

Diversity

maximal dissimilarity

KMeans

clustering

Coverage Score

Bayesian statistics + information entropy

• Model-dependent

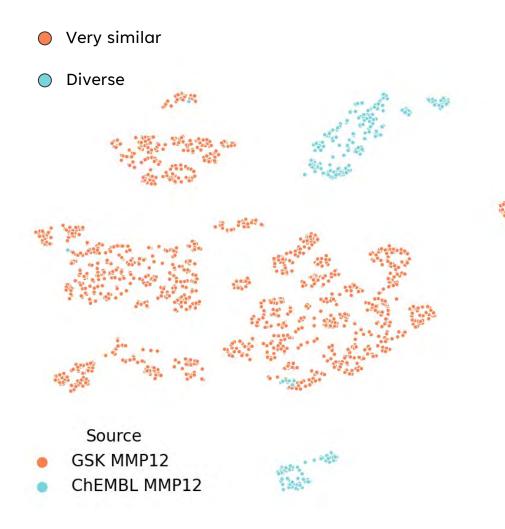
Exploitation

 \diamond

highest predictive score

Uncertainty

highest uncertainty in predictive score



t-SNE plot of D2+ split by D2 (orange) and ChEMBL compounds (pale blue)

Query strategy comparison

• Dataset

- x = molecules from GSK MMP12 set (similar) and ChEMBL (dissimilar)
- y = experimentally determined pIC₅₀ values for MMP12
- Data-dependent
 - **Diversity** maximal dissimilarity

KMeans

 \diamond

clustering

Coverage Score

Bayesian statistics + information entropy

Model-dependent

Exploitation

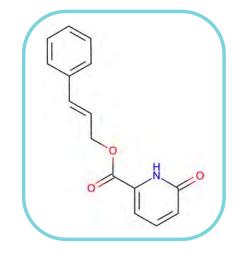
highest predictive score

👃 Uncertainty

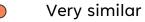
highest uncertainty in predictive score

- Very similar
- Diverse

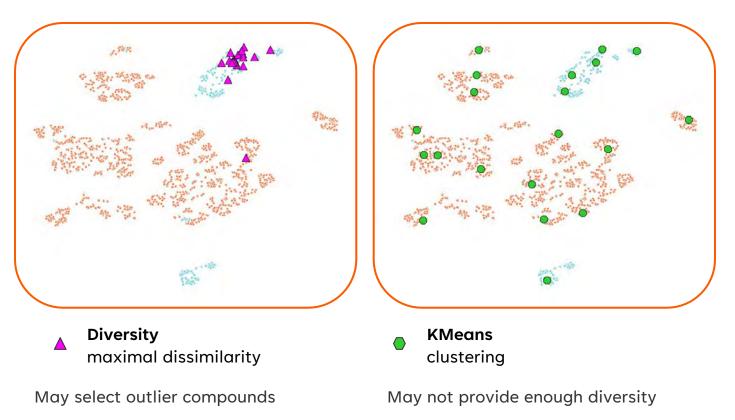




t-SNE plot of D2+ split by D2 (orange) and ChEMBL compounds (pale blue)

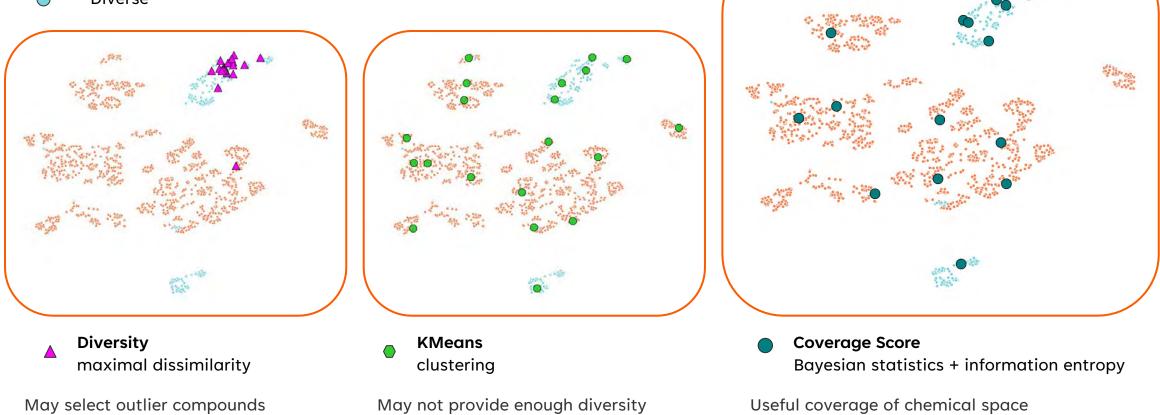


O Diverse



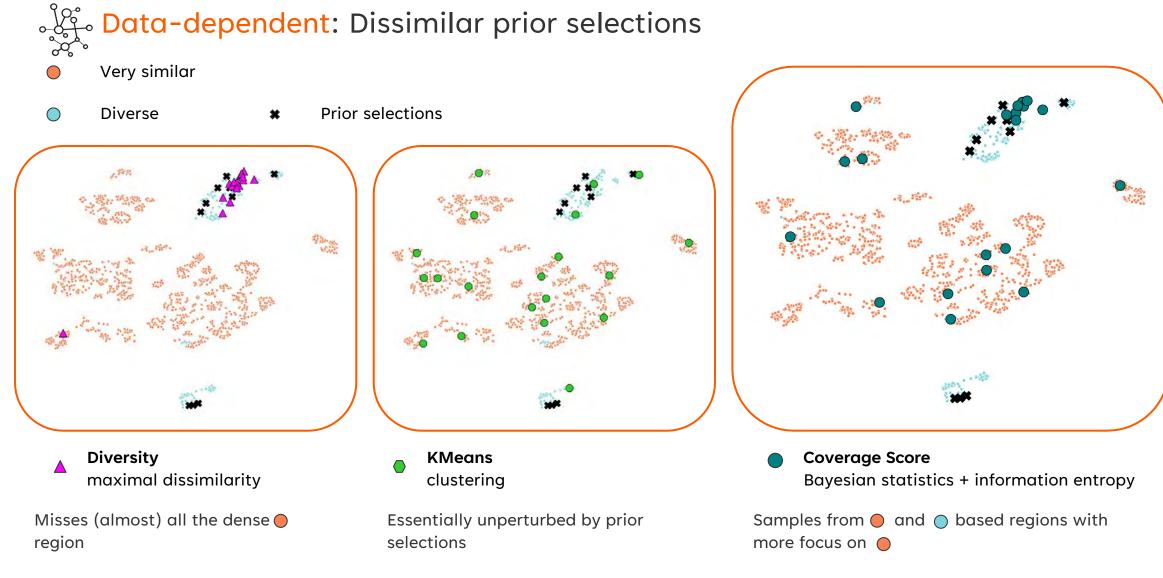
very sir

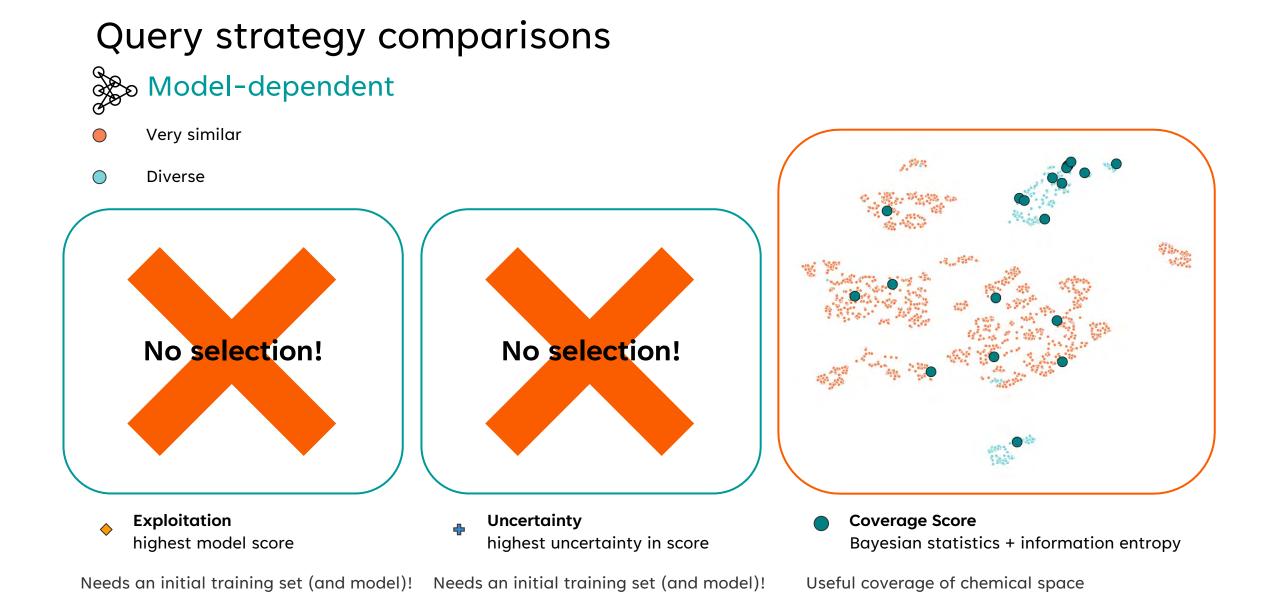
Diverse



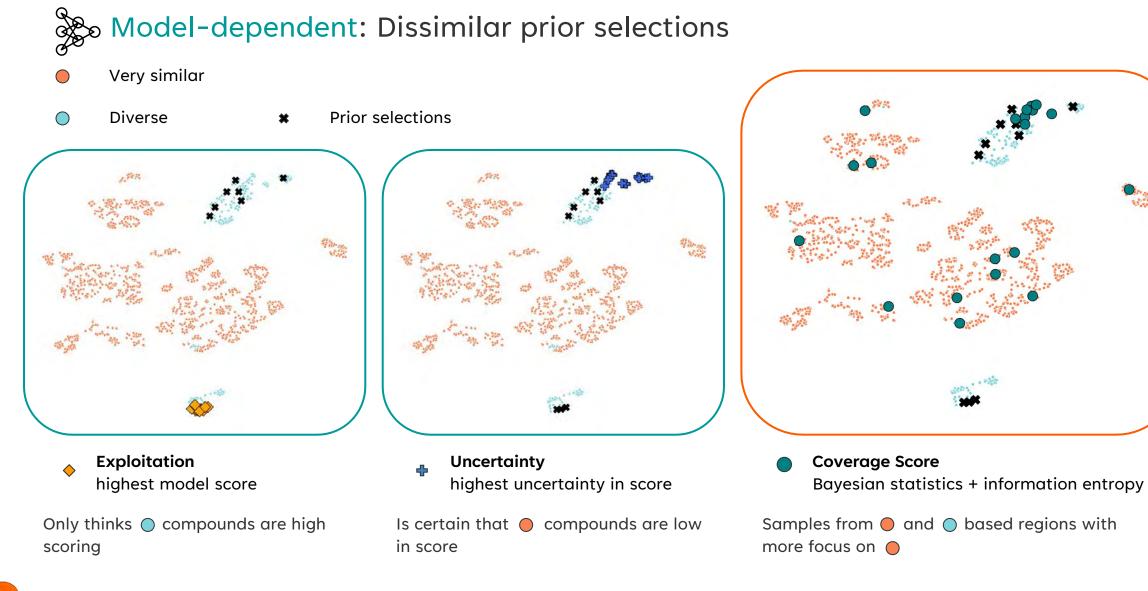
. .

Query strategy comparisons





Query strategy comparisons



Query strategies overview

Model-dependent

Acquisition functions, maximum uncertainty, highest score, expected improvement

Require model and often an uncertainty estimate

If uncertainty is poorly correlated to error in prediction (low data), less useful (and vice versa)

Batch selection may require pseudo-labelled model retraining

Prior molecules can be accounted for via uncertainty metric

Data-dependent

Clustering, maximal dissimilarity, **Coverage** Score

Model-independent

Representation (and/or distance metric) required

Batch selection done greedily or using optimisation

Prior molecules can be accounted for as seed compounds

Outline

Active learning in drug discoveryWhy is it useful?

Query strategies

• How to select molecules?

Coverage Score

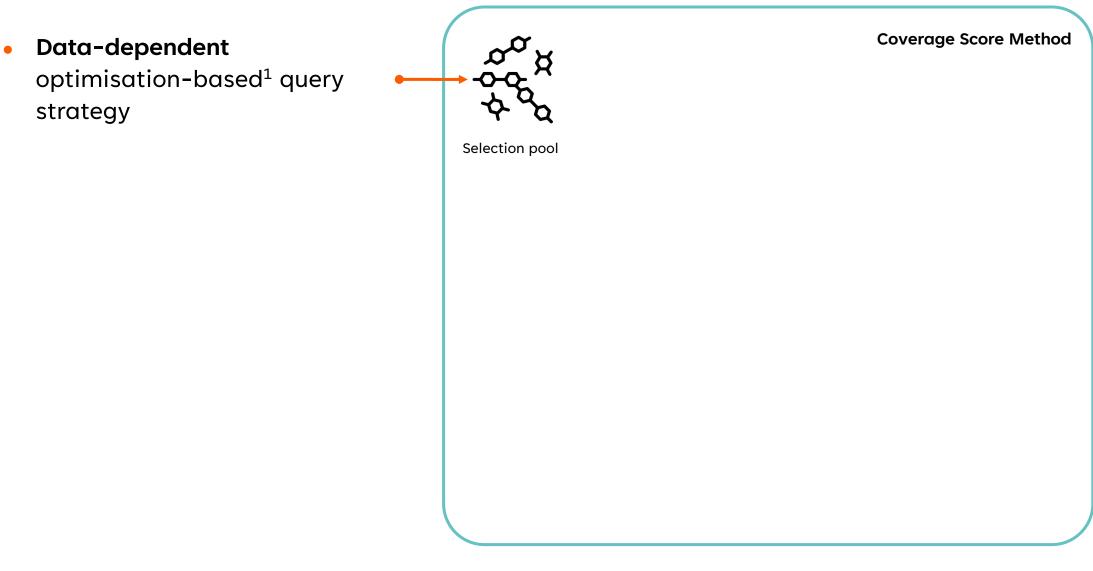
• How does it work?

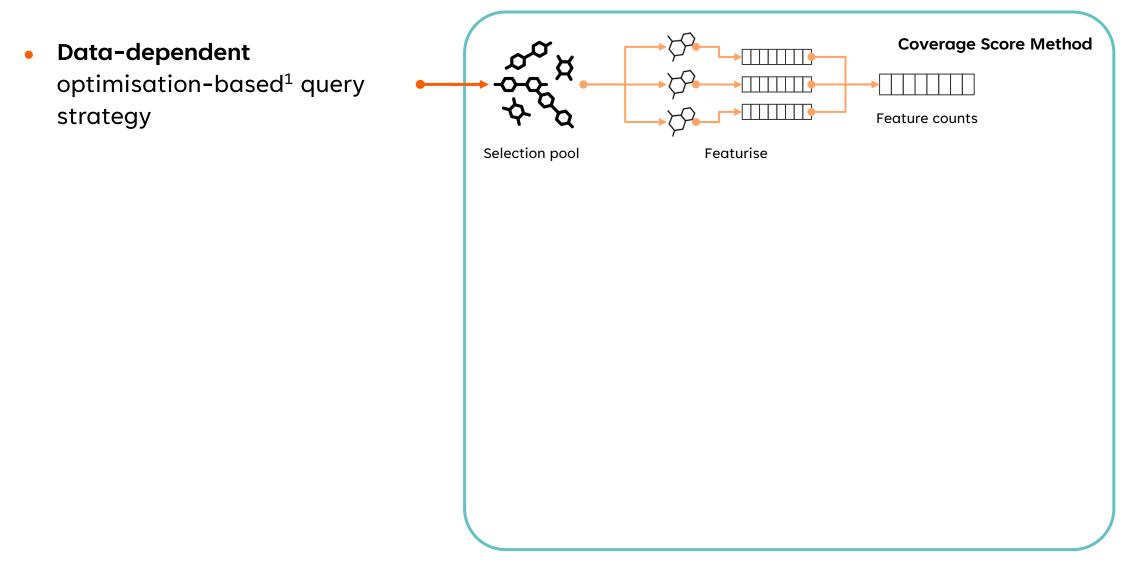
Validation

• How does Coverage Score perform?

Further work/summary

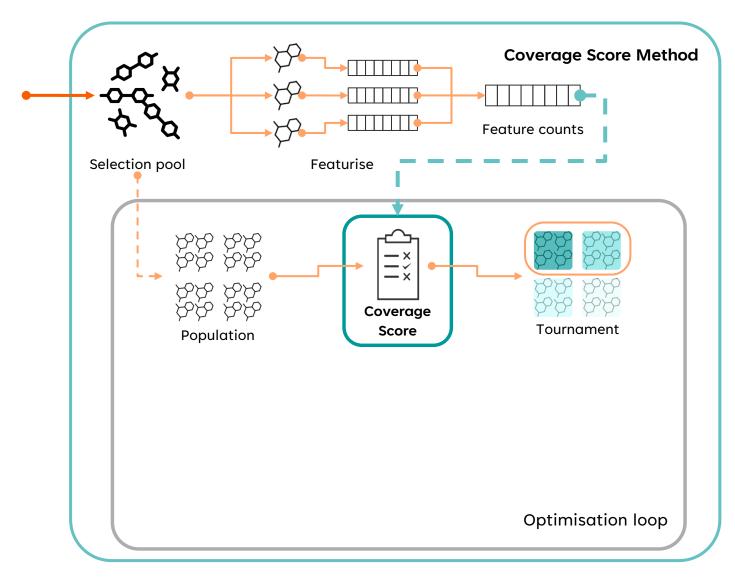
• Where do we go from here?



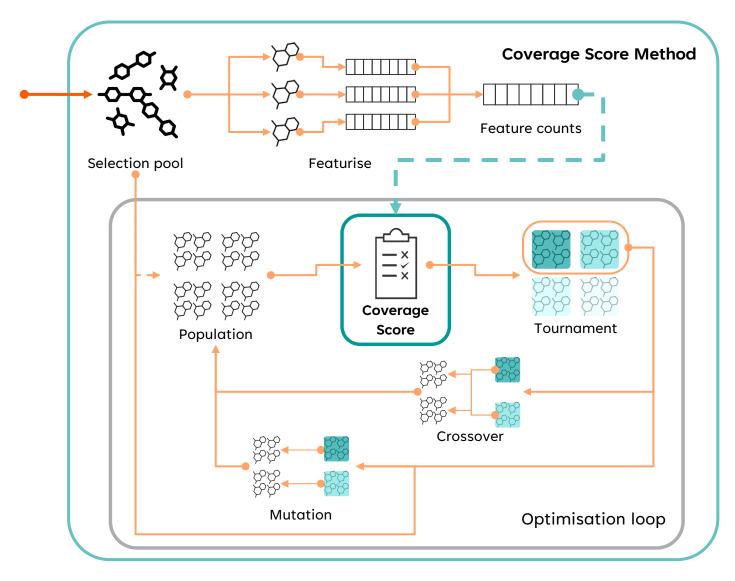


Coverage Score Method Data-dependent $\mathbf{\nabla}$ optimisation-based¹ query strategy Feature counts Selection pool Featurise Population Optimisation loop

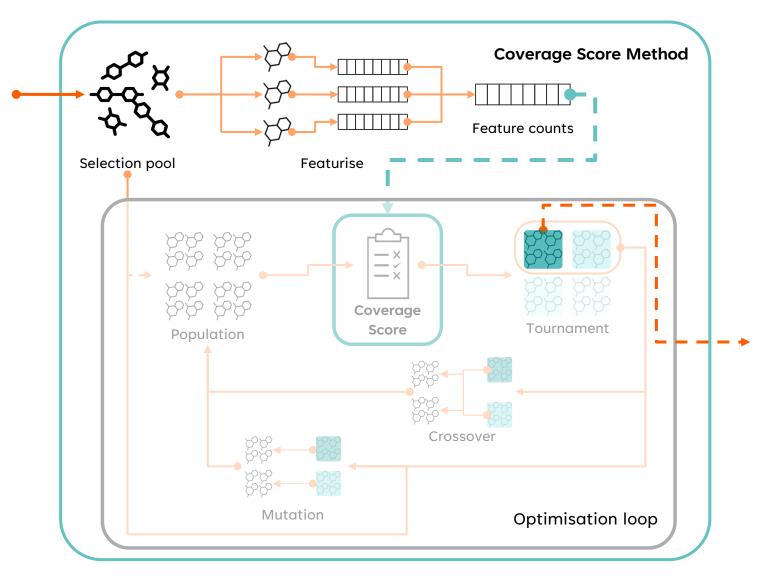
- Data-dependent optimisation-based¹ query strategy
- Subset scoring, maximise
 'Subset Coverage Score'



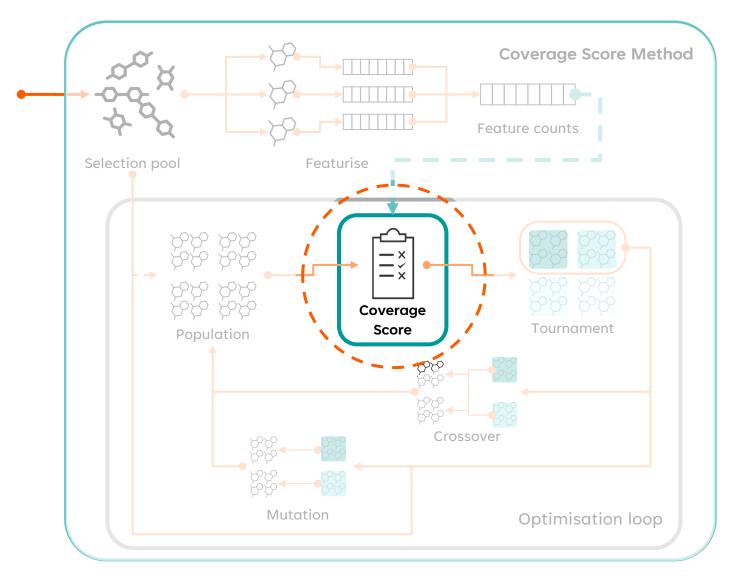
- Data-dependent optimisation-based¹ query strategy
- Subset scoring, maximise
 'Subset Coverage Score'

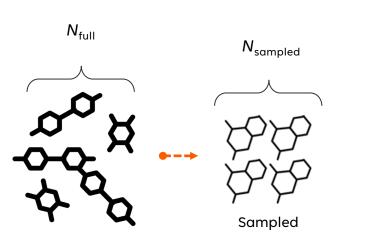


- Data-dependent optimisation-based¹ query strategy
- Subset scoring, maximise
 'Subset Coverage Score'
- Optimisation, evaluation of each unique subset of 10 out of 100, per ns would take ~200 years!



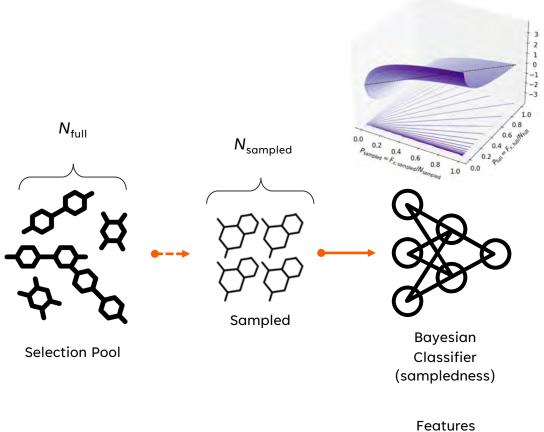
- Data-dependent optimisation-based¹ query strategy
- Subset scoring, maximise
 'Subset Coverage Score'
- Optimisation, evaluation of each unique subset of 10 out of 100, per ns would take ~200 years!



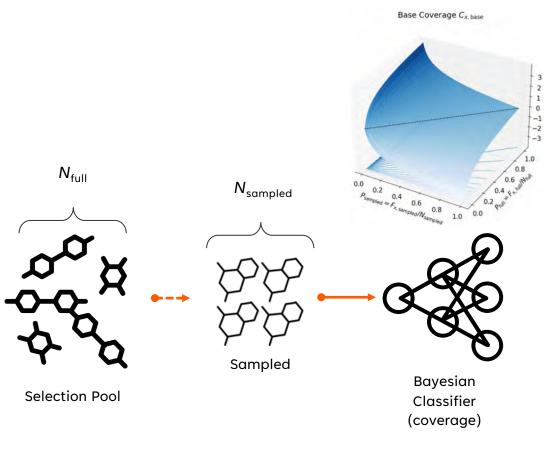


Selection Pool

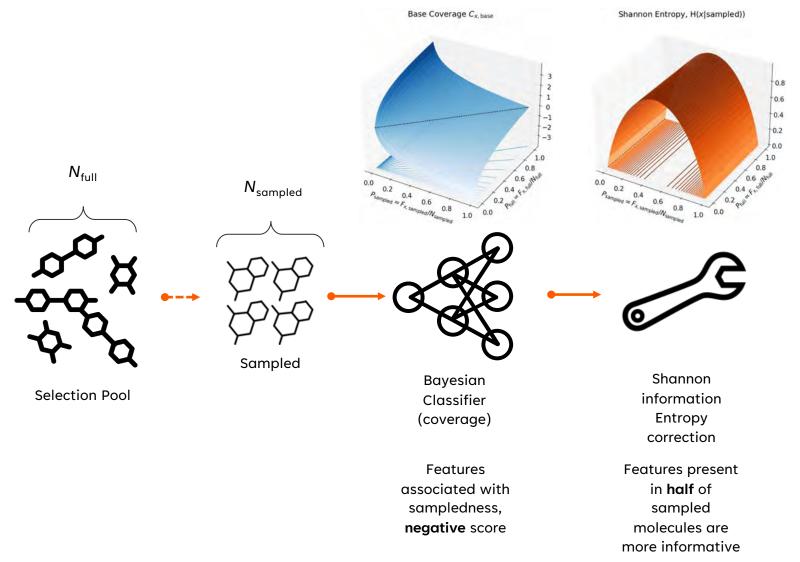
Base Sampledness Sx, base

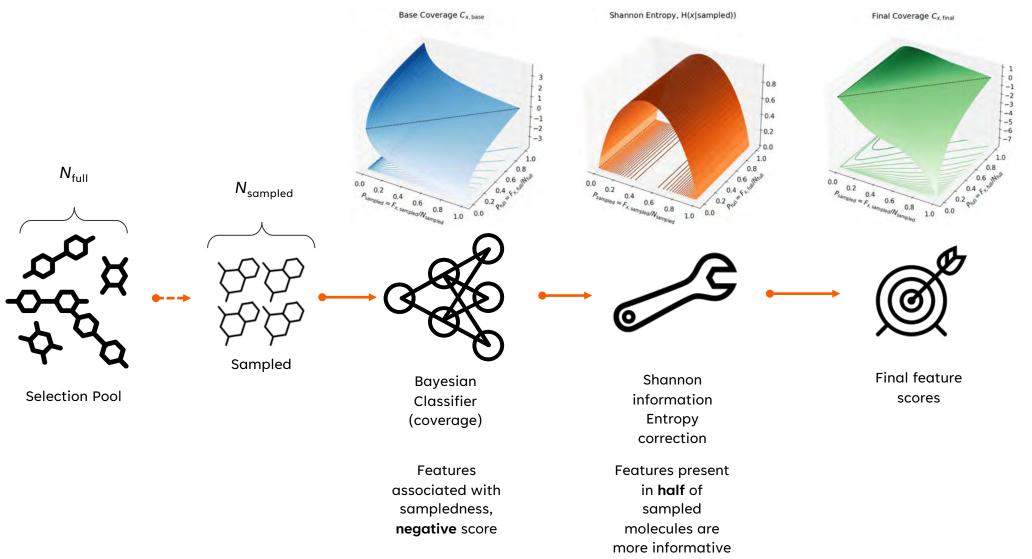


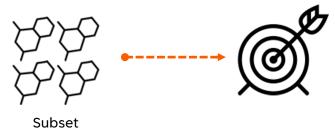
associated with sampledness, **positive** score



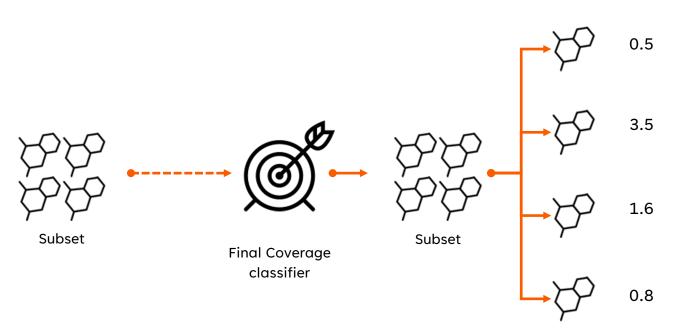
Features associated with sampledness, **negative** score



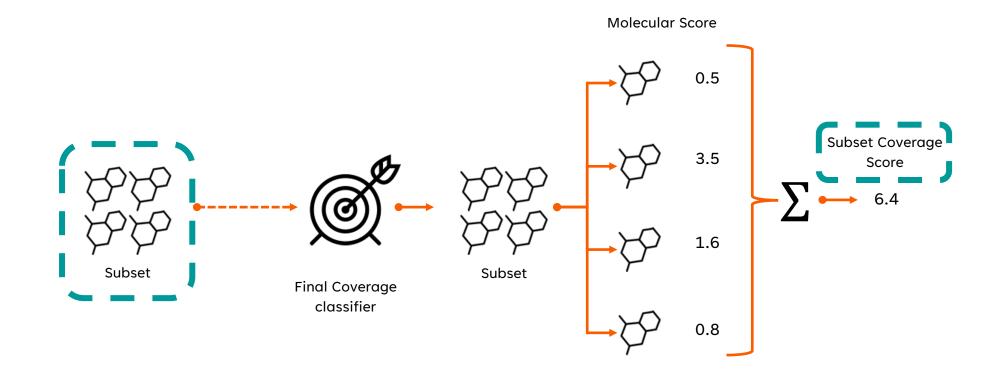




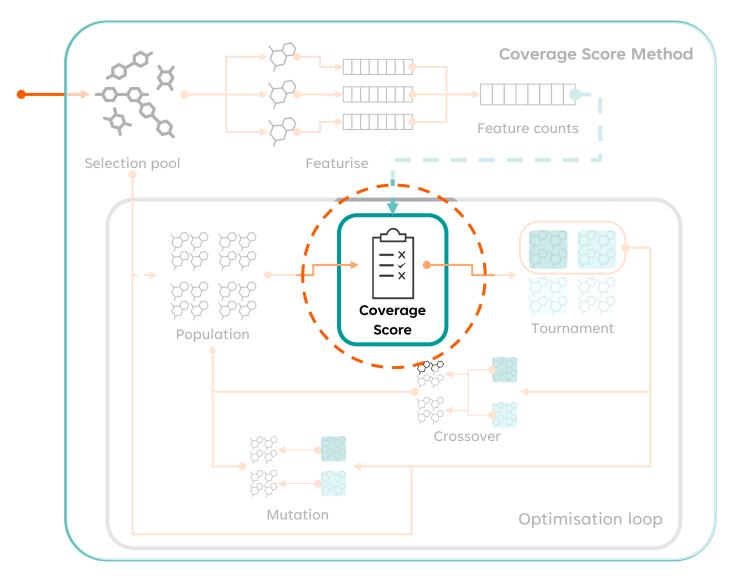
Final Coverage classifier



Molecular Score



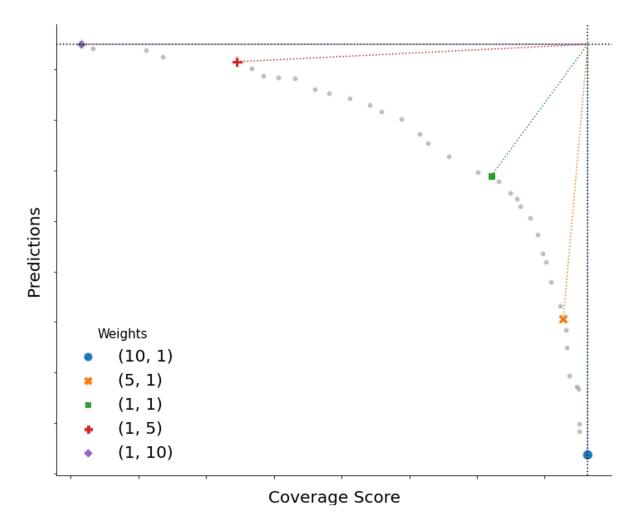
- Data-dependent optimisation-based¹ query strategy
- Subset scoring, maximise
 'Subset Coverage Score'
- Optimisation, evaluation of each unique subset of 10 out of 100, per ns would take ~200 years!



Optimisation of additional properties

- **Genetic algorithm** can optimise for multiple properties
- Balancing exploration (subset coverage score) and exploitation (molecule scores/properties)
- Additional subset scores defined by: $p_S = \sum_{\mathrm{mol} \in S} p_{\mathrm{mol}}$
- Final subset selected through normalised weighted selection

$$S^* = rg\max_S \sum_p w_p \hat{p}_S \quad, w_p \in \mathbb{R}, \hat{p}_S \in [0,1]$$



Outline

Active learning in drug discoveryWhy is it useful?

Query strategies

• How to select molecules?

Coverage Score

• How does it work?

Validation

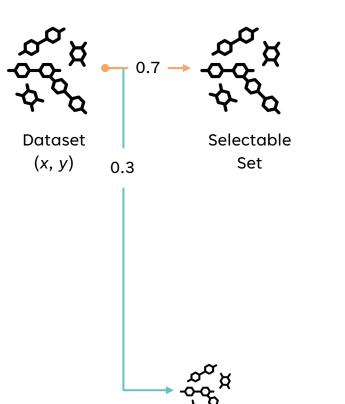
How does Coverage Score perform?

Further work/summary

• Where do we go from here?

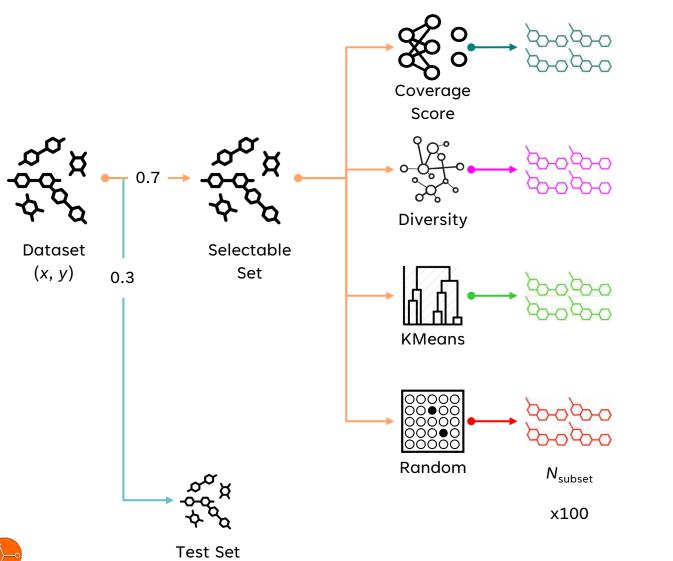
Validating selection methods

Model performance



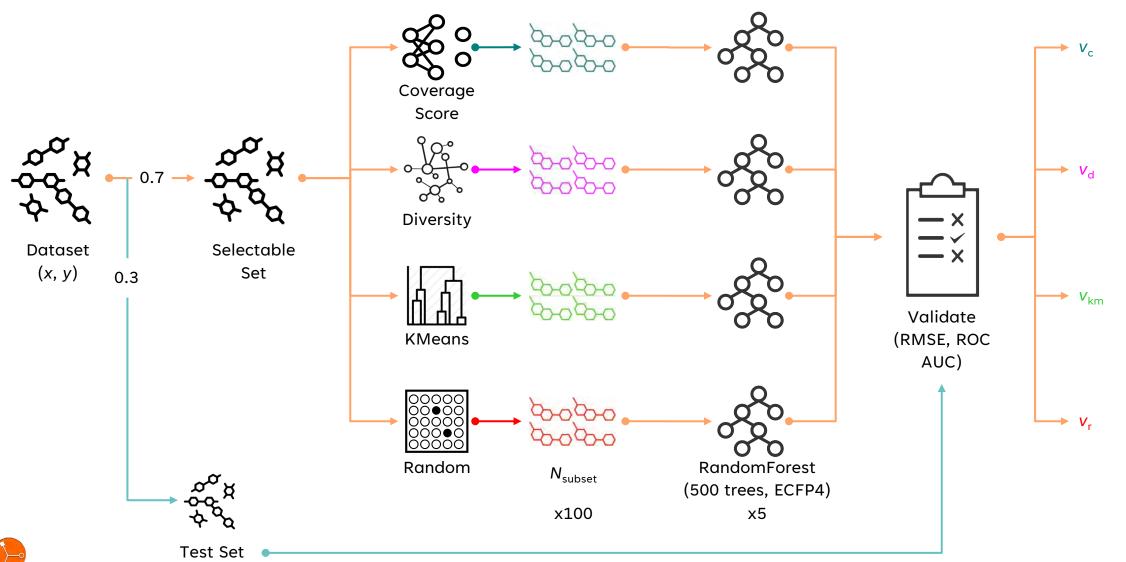
Validating selection methods

Model performance



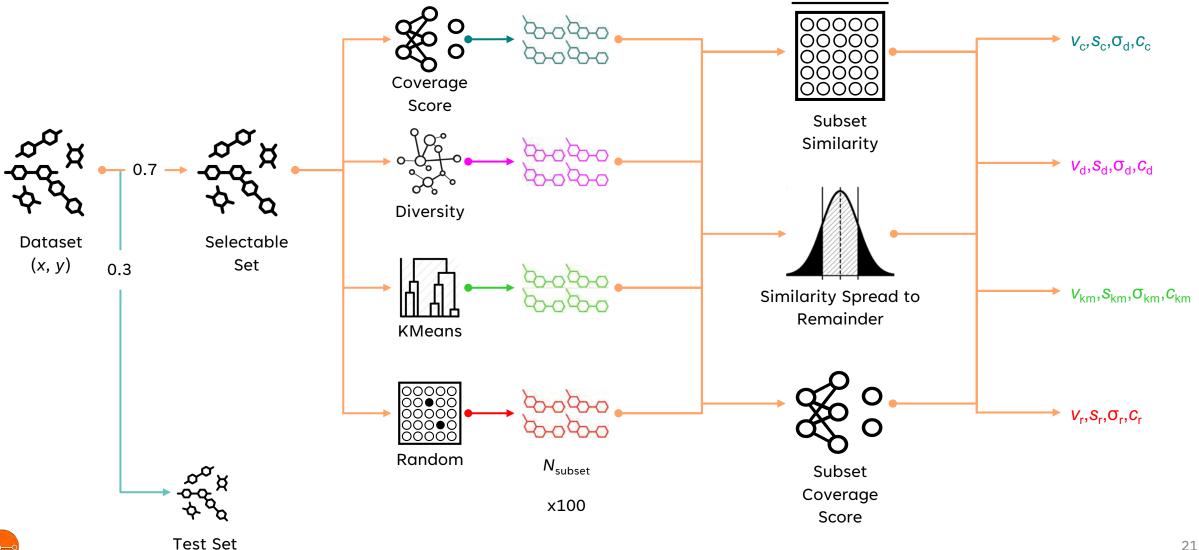
Validating selection methods

Model performance



Validating selection methods

Additional metrics



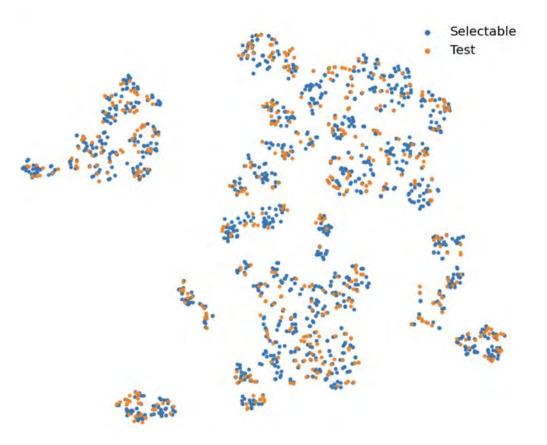
21

Datasets

- Five different datasets tested
- Regression (RMSE) and classification (ROC AUC) tasks

• D2

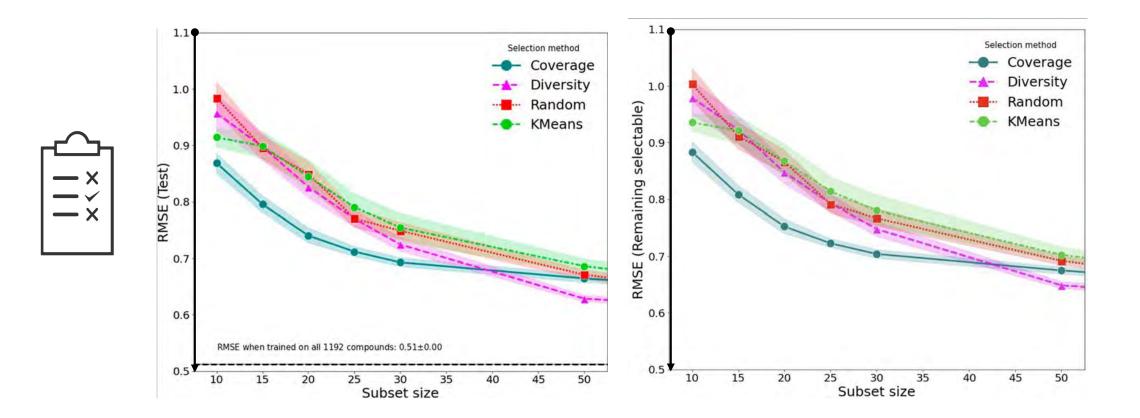
- x = GSK set of molecules (1704)
- y = experimentally determined pIC₅₀ values for MMP12



t-SNE plot of D2 split by selectable (0.7) and test (0.3) sets

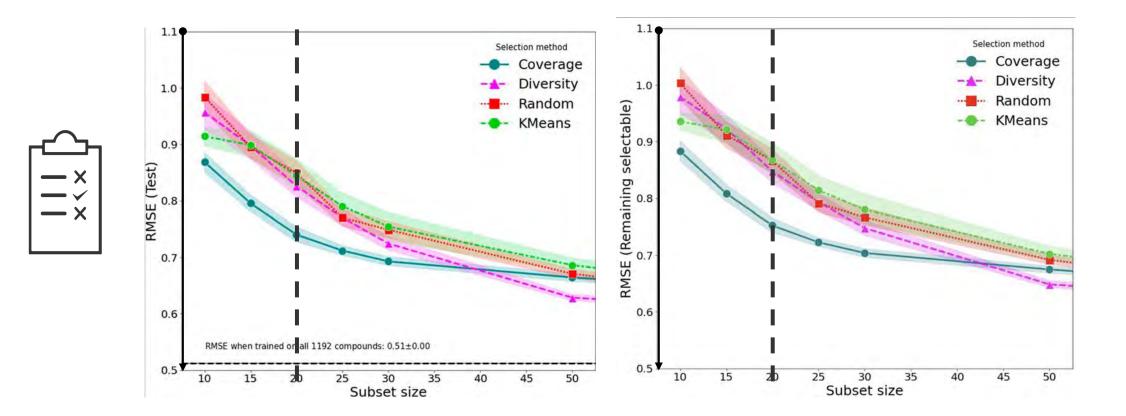
D2 selections

GSK set pIC₅₀ for MMP12



D2 selections

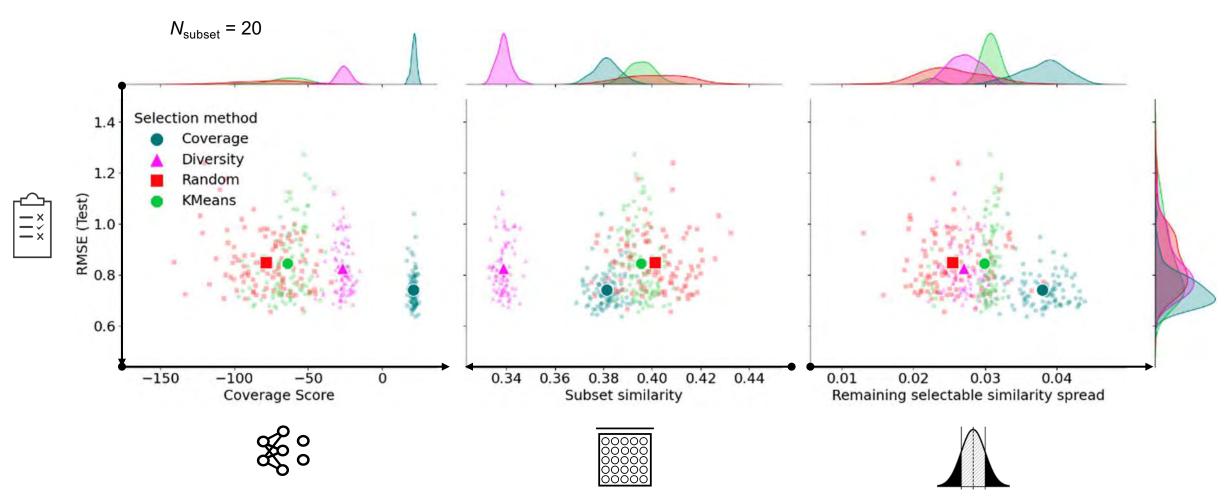
GSK set pIC_{50} for MMP12



D2 selections

GSK set pIC_{50} for MMP12

Each dot = 1 selected subset Large markers = average over all 100 selections

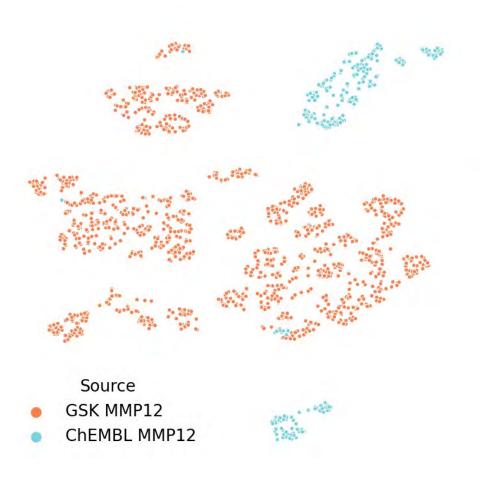


Datasets

- **Five** different datasets tested
- Regression (RMSE) and classification (ROC AUC) tasks
- D2
 - x = GSK set of molecules (1704)
 - y = experimentally determined pIC₅₀ values for MMP12

• D2+

- x = D2 + molecules from ChEMBL (2076)
- y = experimentally determined pIC₅₀ values for MMP12
- Simulated subsequent 15 cycles of selection
 N_{subset} = 20

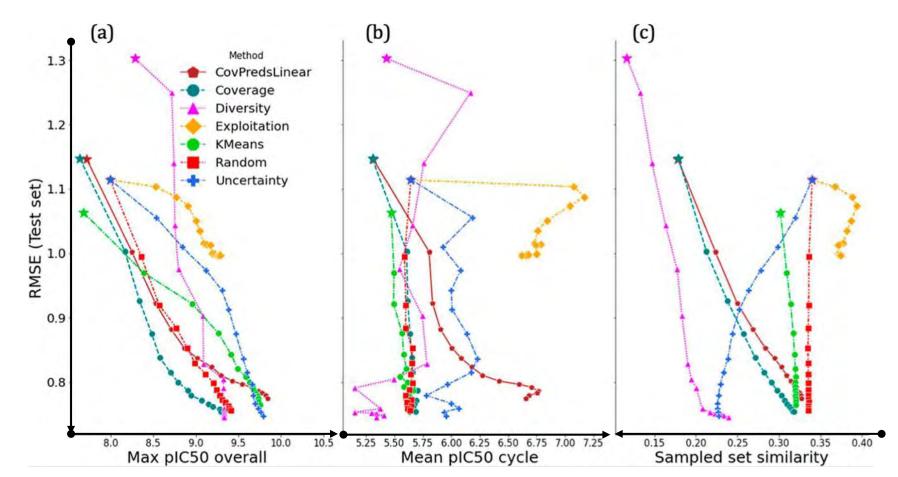


t-SNE plot of D2+ split by D2 (orange) and ChEMBL compounds (pale blue)

D2+ selections

MMP12 pIC_{50} compounds

- 15 cycles of selection (N_{subset} = 20)
- ★ markers = initial cycle, subsequent cycles connected
- Additional query strategies included:
 - Exploitation → highest predictive score
 - Uncertainty → highest uncertainty in score
 - <u>CovPredsLinear</u> → Coverage Score with predictions, linear increments in weights (CS, P), each cycle (50 → 1, 1 → 50), initial solely Subset Coverage Score based



Outline

Active learning in drug discoveryWhy is it useful?

Query strategies

• How to select molecules?

Coverage Score

• How does it work?

Validation

• How does Coverage Score perform?

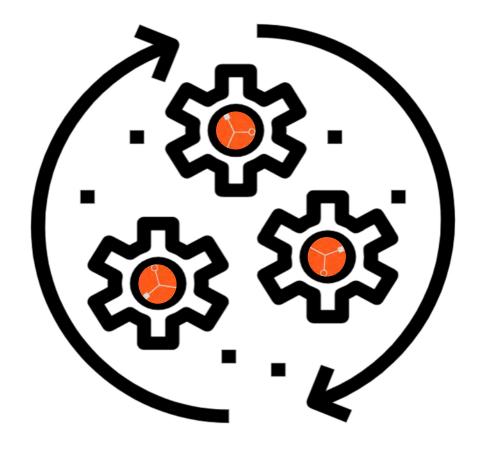
Further work/summary

• Where do we go from here?

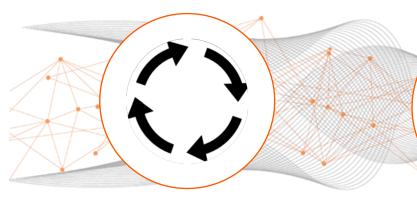
Future work

Where to go from here?

- Automatic exploration / exploitation balancing
- Investigation into optimal feature coverage surface
- Representation analysis, including 3D descriptors (PLIFs)
- Model confidence and domain of applicability as a validation metric



Summary



Active Learning

- Vital to learn effectively by selecting informative molecules
- Useful in low-data regime

Query Strategies

- Query strategies can be model- or datadependent
- Pros and cons to multiple approaches

Coverage Score

 \bigcap

 \mathbf{O}

- Genetic optimisationbased method
- Finds subset that maximises a 'subset coverage score'
- Can optimise for additional properties

Validation

— ×

- Subsets contain dissimilar compounds
- Subsets can better training sets
- Balance of exploitation and exploration

Acknowledgements

Willem van Hoorn

Cedric Bouysset

Alice Cappechi

Anthony Bradley

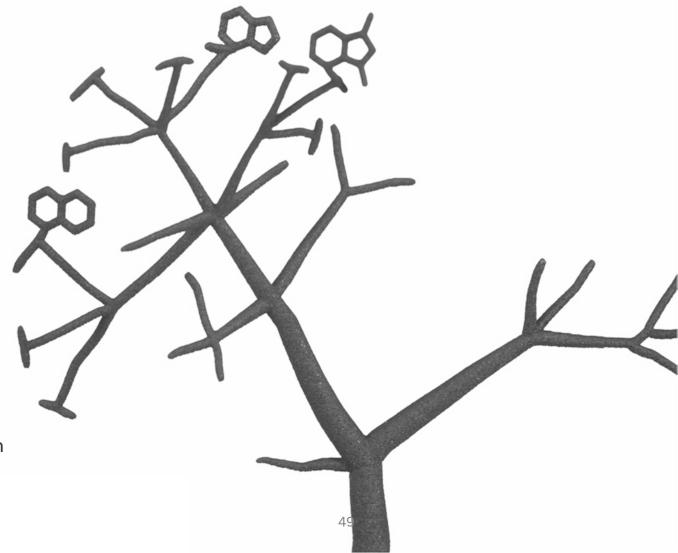
Rob Smith

Exscientia plc

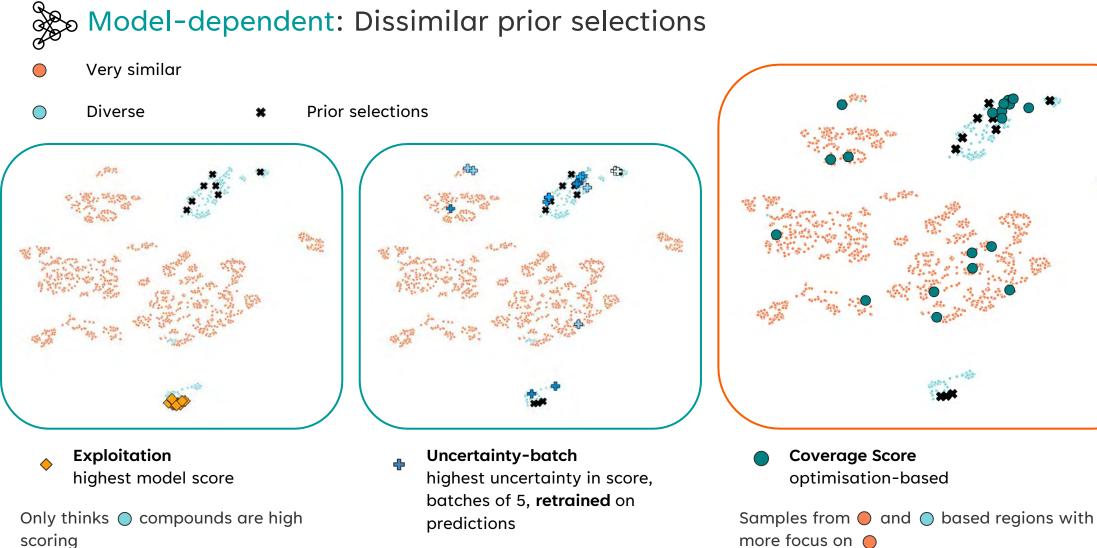
OXFORD HEADQUARTERS The Schrödinger Building Oxford Science Park Oxford OX4 4GE

dwoodward@exscientia.ai

Registered address: The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, United Kingdom Registered number: 13483814

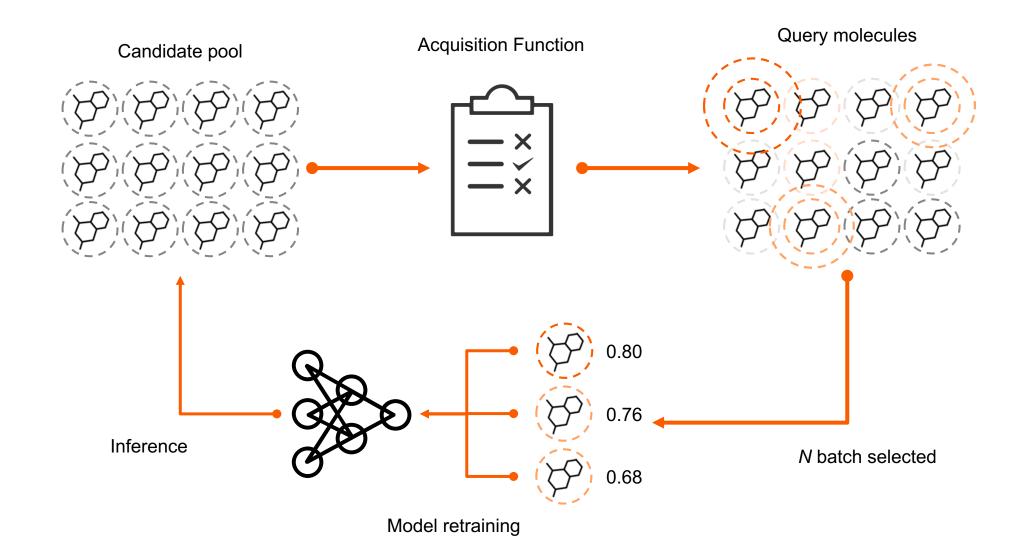


Query strategy comparisons



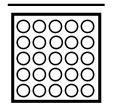


Model-dependent Loop

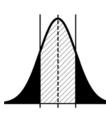


Validation

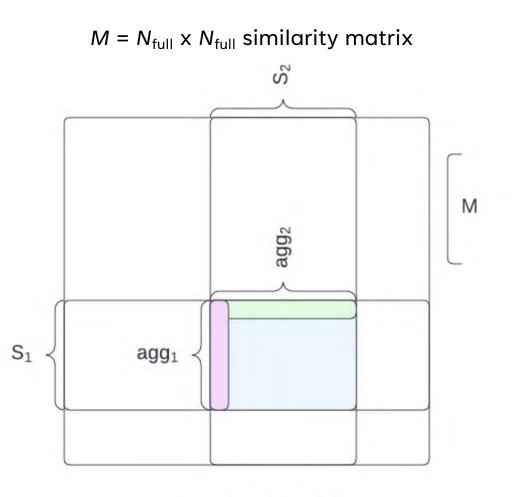
•



- Subset similarity:
 - $S_1 = S_2 = S$
 - $agg_1 = mean$
 - $agg_2 = mean$



- Remaining selectable similarity spread:
 - $S_1 = S_{subset}$
 - $S_2 = S_{\text{full}} S_{\text{subset}}$
 - agg₁ = std dev
 - $agg_2 = mean$



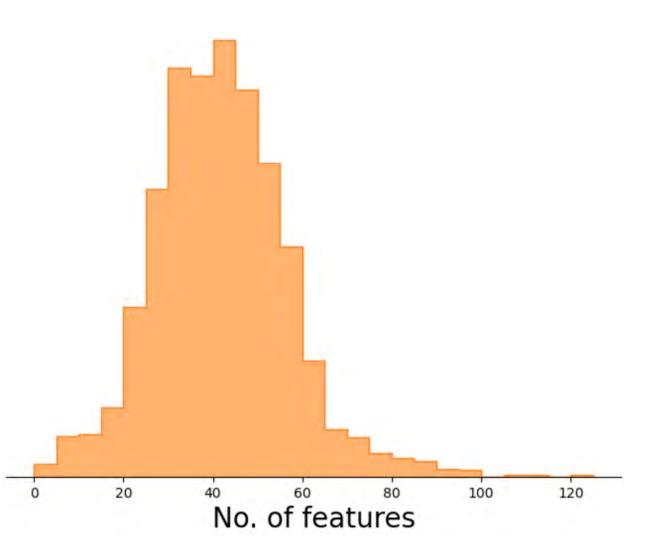
 $\alpha = \operatorname{agg}_1(\operatorname{agg}_2(M[S_1, S_2]))$

D3 & D3F

Blood Brain Barrier Penetrance

• D3

- x = Desalted, deduplicated molecules from MoleculeNet Blood Brain Barrier Penetrance dataset.
- y = {0, 1} classification of brain penetrant (1) or not (0).



D3 & D3F

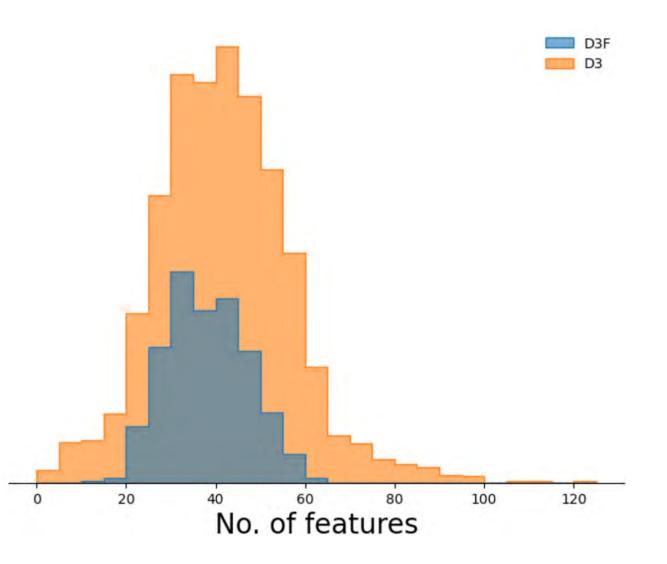
Blood Brain Barrier Penetrance

• D3

- x = Desalted, deduplicated molecules from MoleculeNet Blood Brain Barrier Penetrance dataset.
- y = {0, 1} classification of brain penetrant (1) or not (0).

• D3F

• D3 filtered for drug-like molecules.

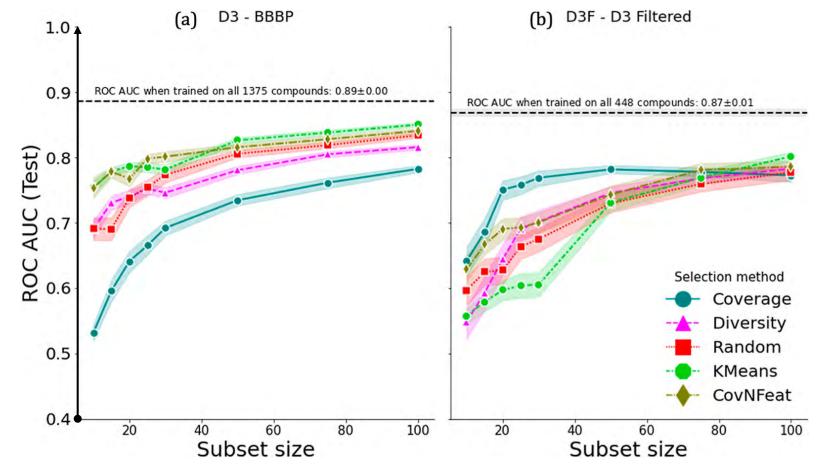


D3 & D3F selections

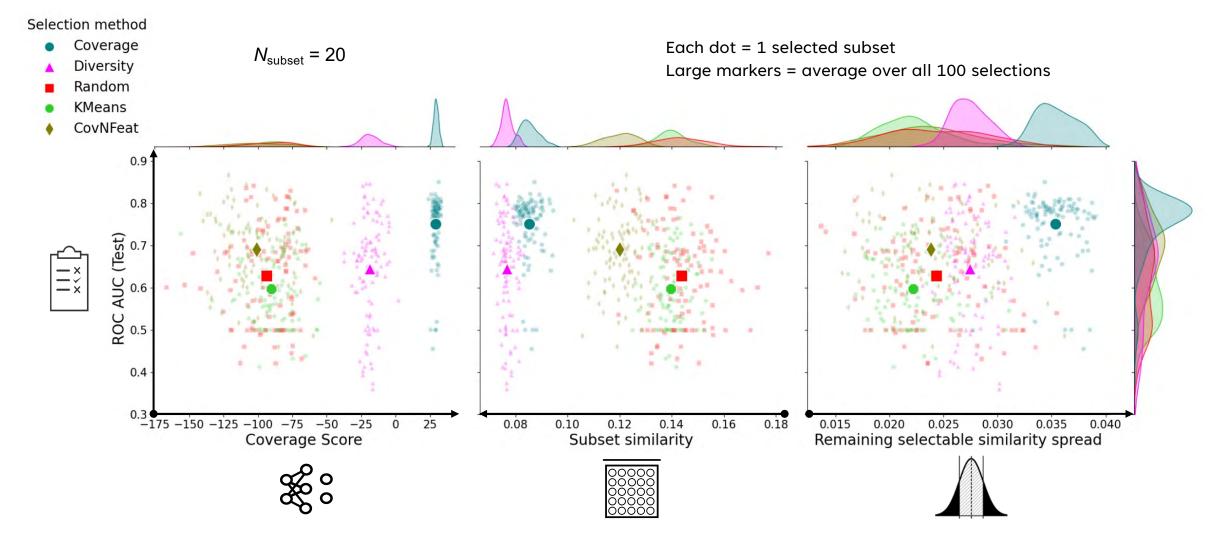
Blood Brain Barrier Penetrance

- D3 (left):
 Coverage performs poorly, optimising for molecules with a larger number of features as well (CovNFeat) does better.
- D3F (right):

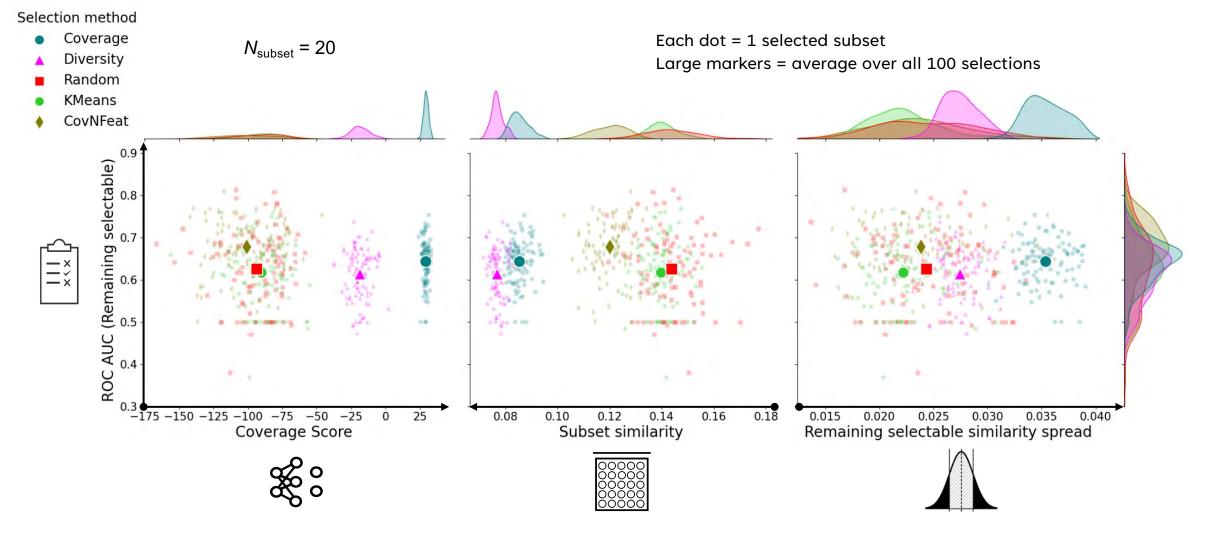
• Coverage performs much better.



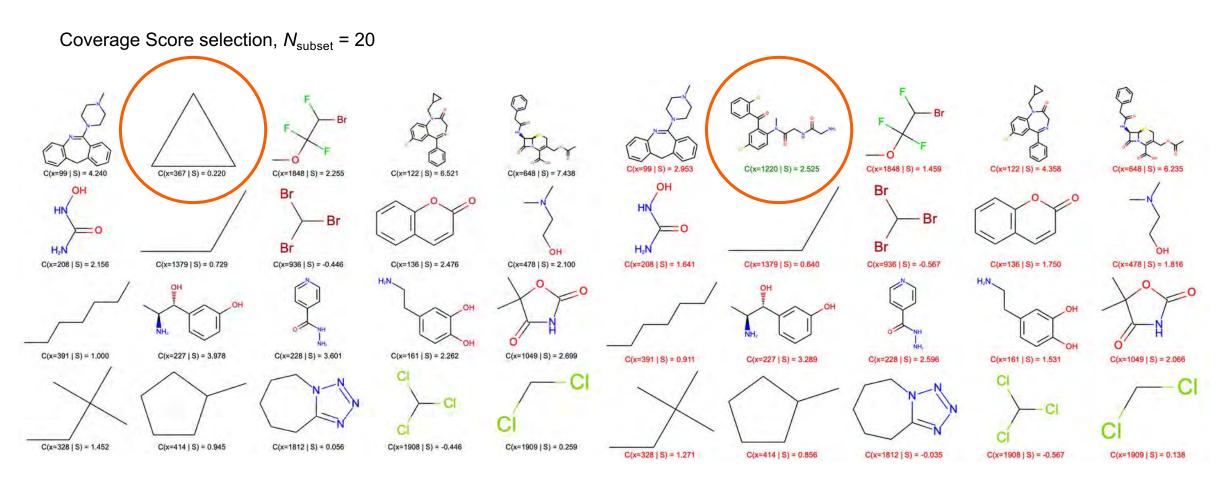
D3F selections



D3F selections



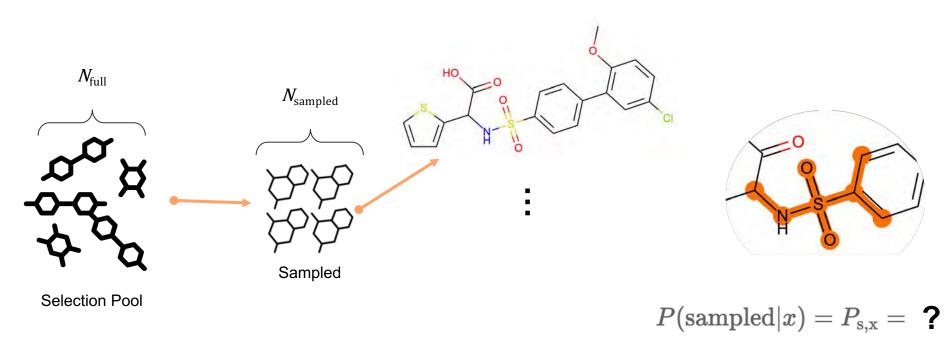
D3



Subset Coverage Score = 43.49

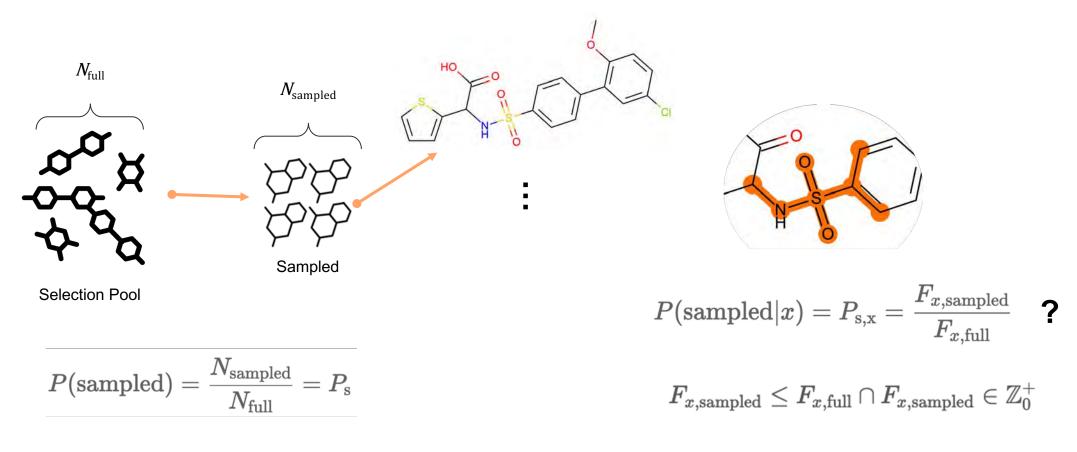
Subset Coverage Score = 34.87

Feature Counts

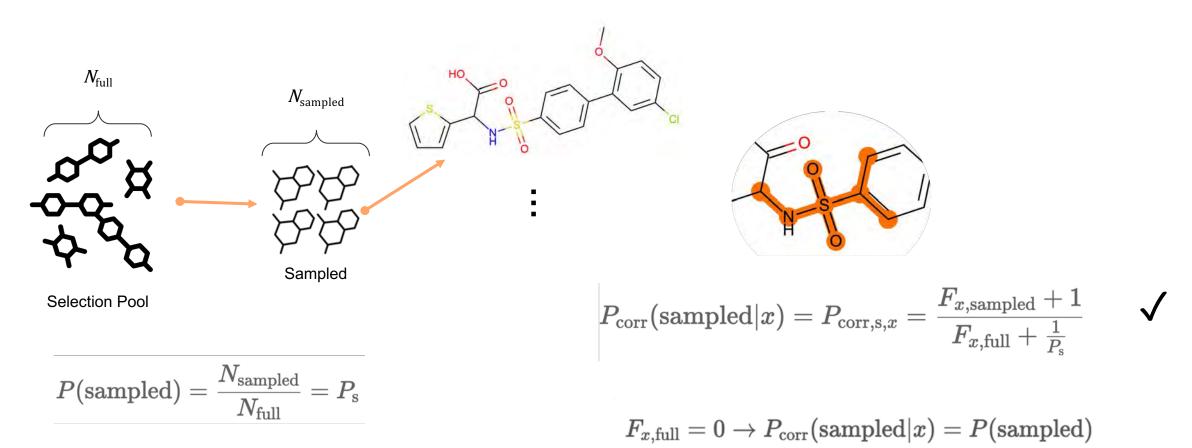


$$P(ext{sampled}) = rac{N_ ext{sampled}}{N_ ext{full}} = P_ ext{s}$$

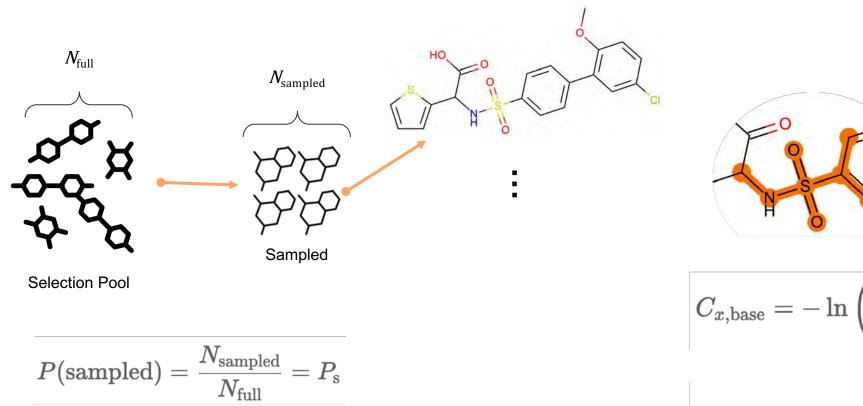
Feature Counts



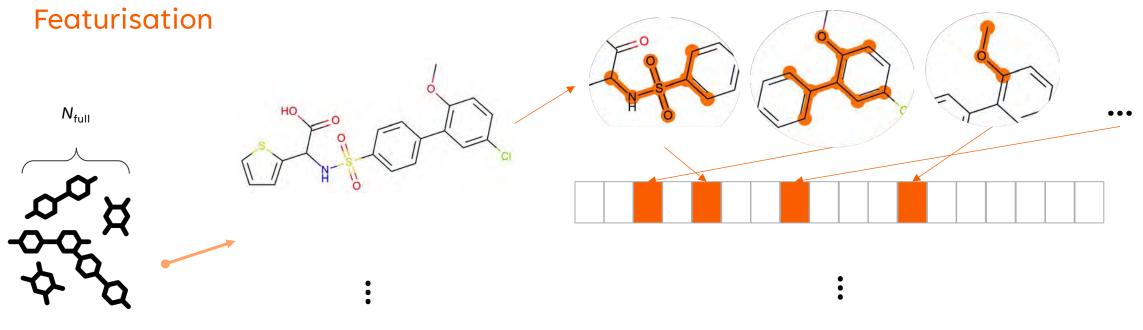
Feature Counts



Feature Counts



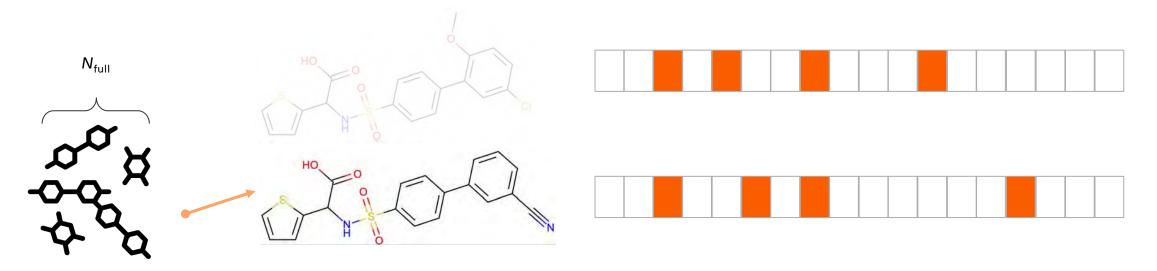
 $egin{aligned} C_{x, ext{base}} &= -\ln\left(rac{P_{ ext{corr,s},x}}{P_{ ext{s}}}
ight) \ P_{ ext{corr,s},x} &> P_{ ext{s}} o C_{x, ext{base}} < 0 \end{aligned}$



Selection Pool

•

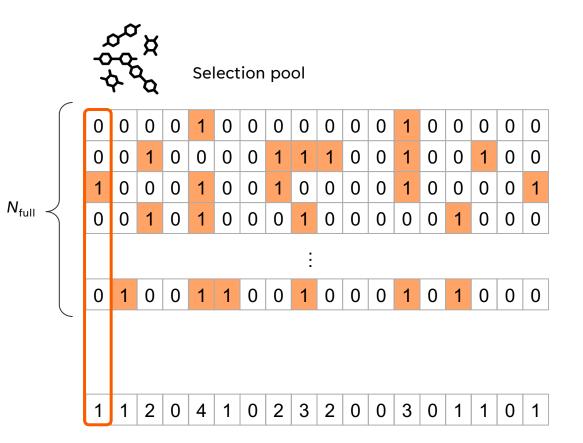
Featurisation



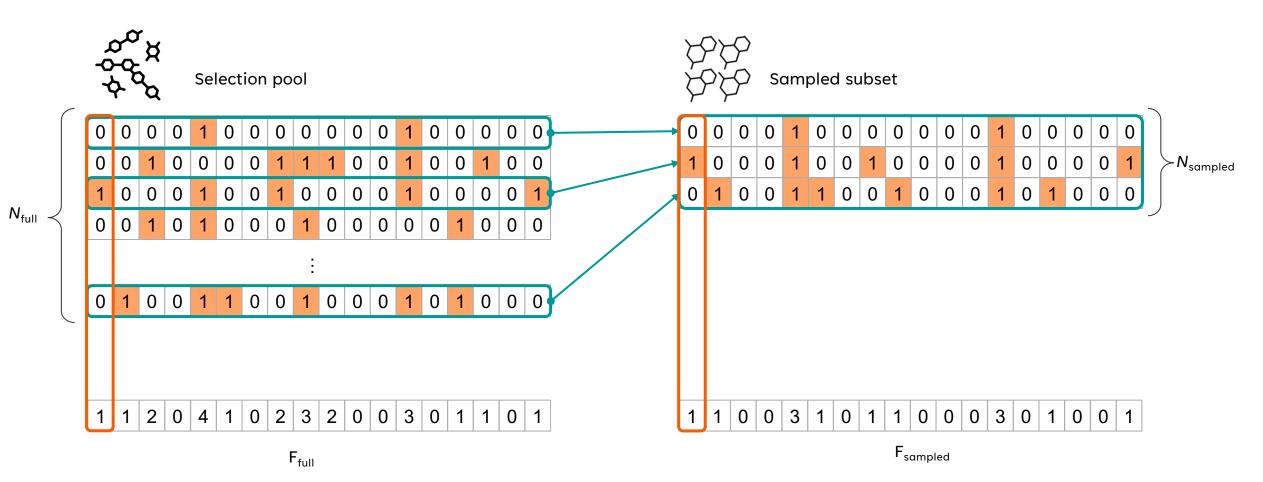
•

Selection Pool

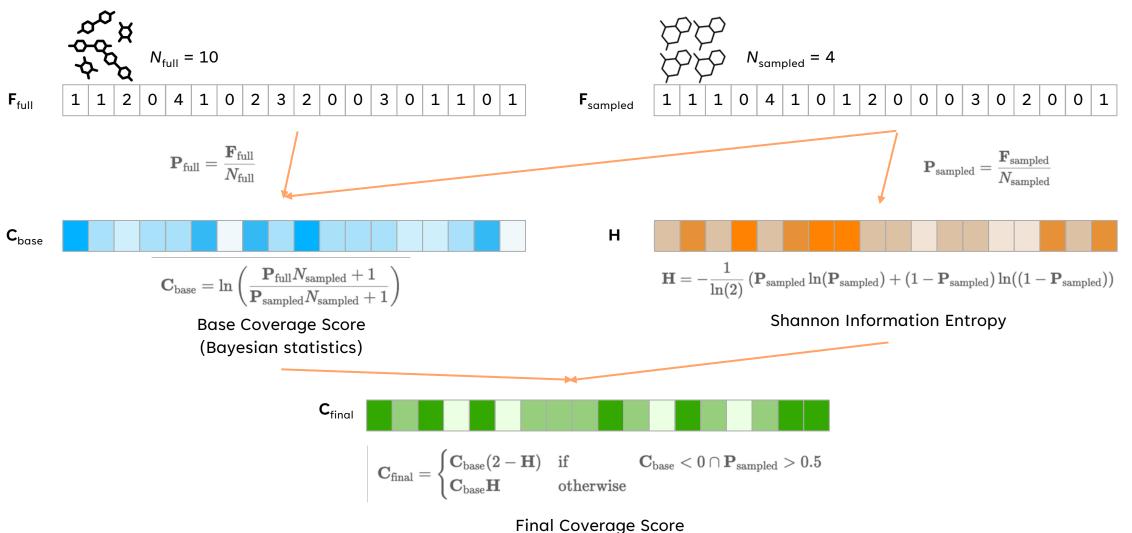
Feature counts



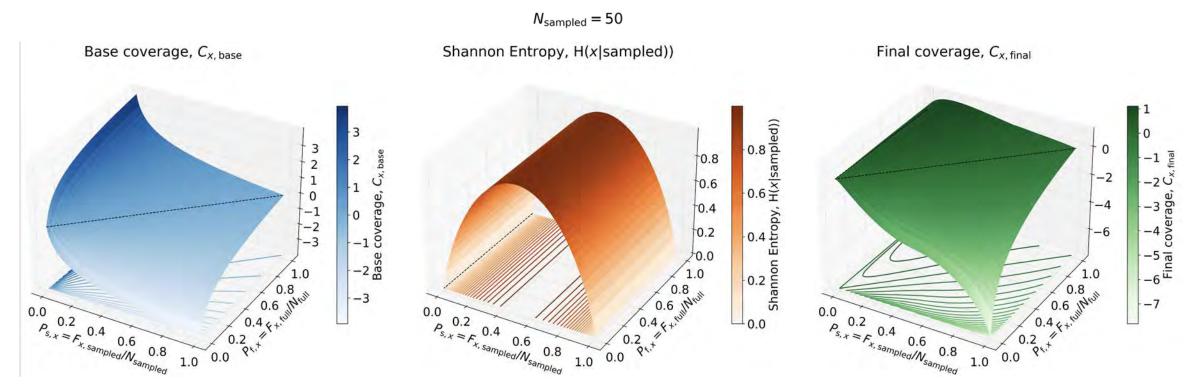
Feature counts



Feature Coverage Score



Feature Coverage Score surfaces

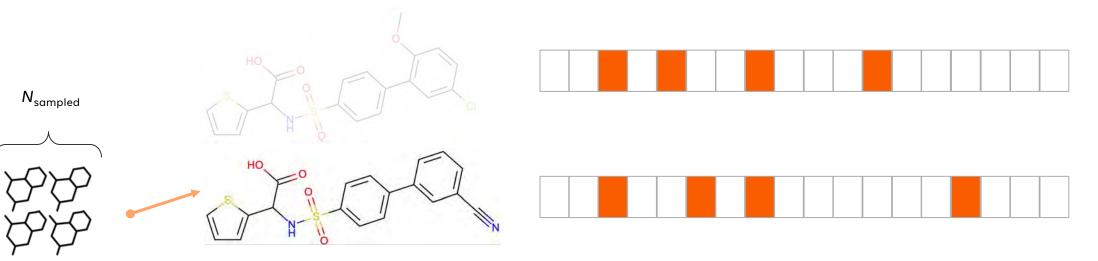


- Higher the feature count in the sampled set, the lower the score
- Higher the feature count in the full set, the higher the score

• Score is **penalising** when
$$\frac{\mathbf{F}_{\text{full}}}{N_{\text{full}}} < \frac{\mathbf{F}_{\text{sampled}}}{N_{\text{sampled}}}$$
, i.e., when proportion sampled > proportion full

.

Molecular Coverage Score

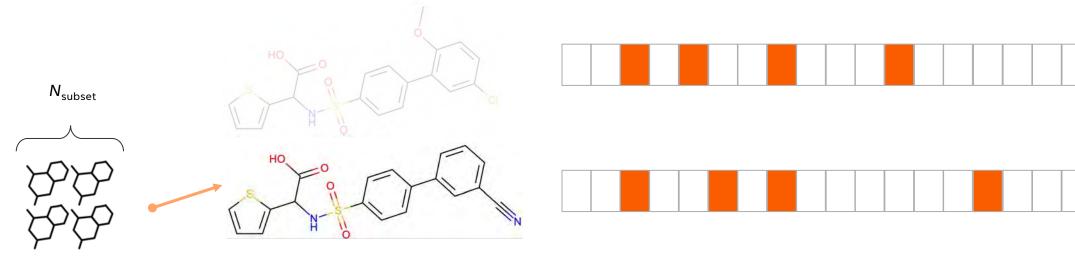


•

Sampled

.

Molecular Coverage Score

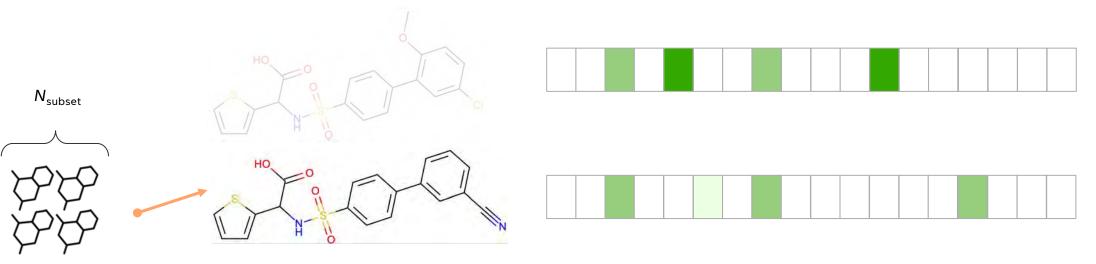


Subset

•

.

Molecular Coverage Score

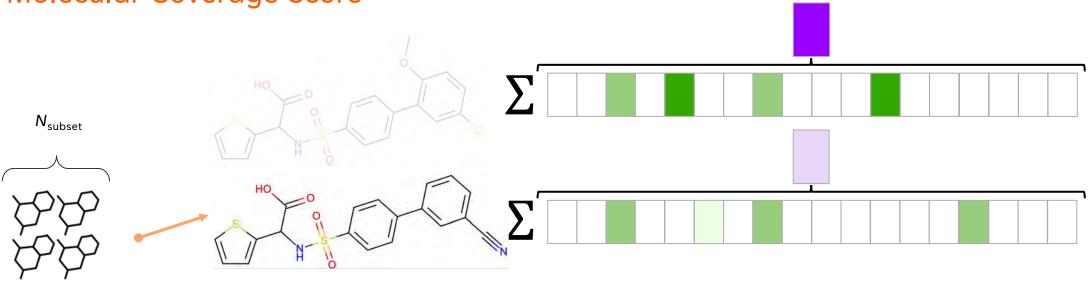


•

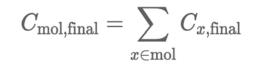
Subset

.

Molecular Coverage Score

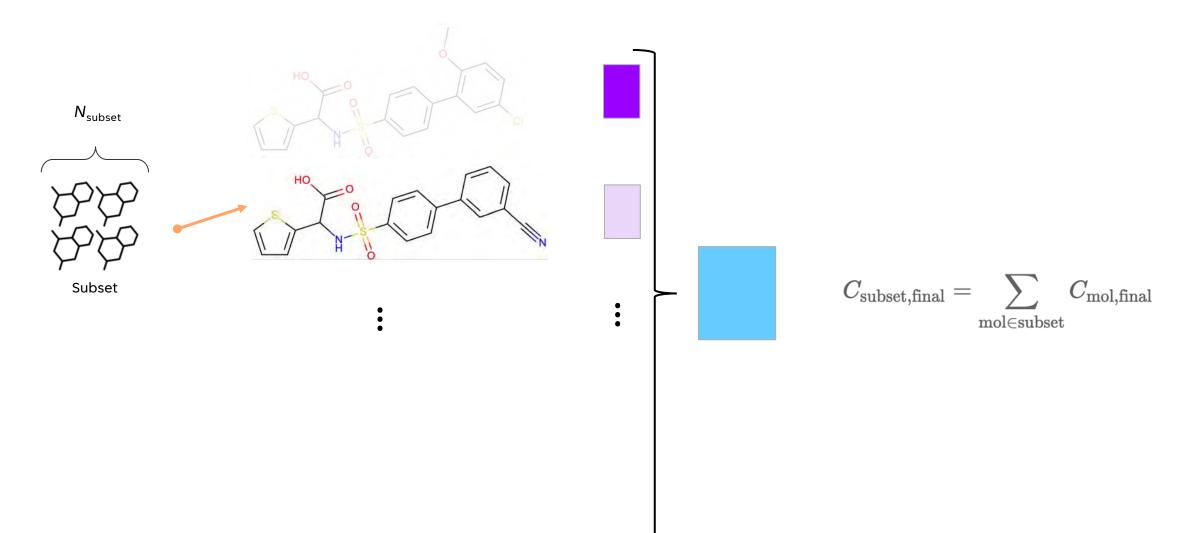


Subset



•

Subset Coverage Score



Subset Coverage Score

