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Drug discovery as a multi-parameter optimisation problem

Absorption:

To what extent does the drug
enter the body?

- Amount of systemically
available drug
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Pharmacokinetics/

ADME properties

v

Distribution:

Which body compartments does
the drug reach?

- Concentration at the target
site

Metabolism/Excretion:
How fast is the drug metabolised
and excreted? Active
metabolites?

-> Duration of drug effect



Measurement of PK/ADME properties

TierO Tier1 Tier 2 Tier 3
—f_f_fﬁ
Cost | in vitro in vitro in vitro in vivo Cost 1
Throughput T _10sD  -Microsomal stability -Hepatocyte stability ~ -Bioavailability (F) Throughput |
Biological (LM) (HEP) -Volume of distribution Biological
complexity | -Solubility (SOL) -Plasma protein (Vd) complexity 1
binding (PPB) -Total clearance (Cl)
Absorption -Cacoz2-
Distribution Permeability/Efflux

Metabolism/Excretion

Cheap/high-throughput assays required to test large numbers of compounds
Only measure promising candidates in complex assays
Can we use ML predictions to prioritise compounds for synthesis/to replace experiments?
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Multi-task modelling
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Multi-task modelling
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« Motivation: make best use of available data
— Assays are related
— Data-poor assays might benefit from signal in data-rich assays

* Implementation: Chemprop! (graph-convolutional neural network)
— Input features: chemical graph with basic information about atoms and bonds

— Ensembling (we used n=5)

.m. E{’;J}f};gn‘i' Yang et al 2019, https://doi.org/10.1021/acs.jcim.9b00237



https://doi.org/10.1021/acs.jcim.9b00237

Study design

Goals:

 MT models superior to ST approaches (Chemprop and Random Forest) for
data at hand?

* When predicting higher tier assays for a compound: additional benefit of
including available experimental data of lower tiers in training?

Data:
« 28 assays arranged in 4 tiers
« Data preparation: curation, filtering, transformations

Model evaluation:
» Temporal data splits (train on up to 31/12/2020, evaluate on 2021)

« R2 (Coefficient of determination) as primary metric
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Assay datasets

Tier 0 (n=2) Tier 1 (n=6) Tier 2 (n=14) Tier 3 (n=6)

Training set sizes ~120k Training set sizes Training set sizes Training set sizes
50k - 125k 1k -17k 2k - 10k
Assays
* logDatpH2and 11 Assays Assays Assays
» SOL (different pH) » HEP stability  Invivo PK(CI, Vd, F)
» LM stability (different in rat and mouse
(different species) species/serum

concentrations)
* PPB (different
species)
 Cacoz-
Permeability/Efflux

Model scores are reported for subset of assays that reflect overall trends

™ Boehringer
I"ll Ingelheim



Model evaluation
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R2

Tier0 Tierl Tier 2 Tier 3

- MT-Chemprop outperforms ST approaches

B RF+AlvaDesc
B ST-Chemprop
B MT-Chemprop



PPB_rat: predicted vs experimental
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Understanding the success of MT models

« Examplary target assay: RHEP 5

« Which auxiliary assays are the most useful?
— Train and evaluate pairwise MT-Chemprop models
— Can we discover factors that determine the success?

R2 ST-Chemprop R2 MT-Chemprop

0.313 0.519
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Understanding the success of MT models (RHEP_5 example)

R2 MT - R2 ST

x-axis: absolute Pearson correlation coefficient
of overlapping training compounds
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x-axis: training compounds in auxiliary assay
not included in target assay
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—> Size of auxiliary dataset more relevant than correlation for success of MT model
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MT model at design stage vs testing stage

MT model MT model+exp
-> design stage of compound -> testing stage of compound
TierO Tier1l Tier2 Tier3 TierO Tier1l Tier2 Tier3

Training

“Test compounds* now both in
training and test set
Test

e.g. data forTier O to Tier 2 available
for training when predicting Tier 3

(dw s1sayluAs Aq paios) spunodwo)
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Model evaluation

Tier 1 Tier 2 Tier 3

RF+AlvaDesc
ST-Chemprop
MT-Chemprop

08 MT-Chemprop+exp

R2

Experimental data of

lower tier assays added
to training data

Qé 4{ @&$ﬁ) 'ODG OQCO 2 ano 2 Qaf . ’?a{ "P"'?f

- MT-Chemprop further improved with experimental data of lower tiers available
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Conclusion

» MT-Chemprop clearly outperforms ST models on the studied ADME/PK
datasets at design stage

» Data-rich assays seem to be the most useful auxiliary assays in the MT-
model (despite low correlation to target assay)

» Furtherimprovements possible at testing stage when experimental data
(earlier assays) of test compounds is added to the training data
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