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Drug discovery as a multi-parameter optimisation problem

Potency Pharmacokinetics/
ADME properties

Safety

Absorption:
To what extent does the drug
enter the body?
→ Amount of systemically
available drug

Distribution:
Which body compartments does
the drug reach?
→ Concentration at the target
site

Metabolism/Excretion:
How fast is the drug metabolised
and excreted? Active
metabolites?
→ Duration of drug effect
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Measurement of PK/ADME properties

Cost ↓
Throughput ↑
Biological 
complexity ↓

Cost ↑
Throughput ↓
Biological 
complexity ↑

-LogD -Microsomal stability
(LM)
-Solubility (SOL)

-Hepatocyte stability
(HEP)
-Plasma protein
binding (PPB)
-Caco2-
Permeability/Efflux

-Bioavailability (F)
-Volume of distribution
(Vd)
-Total clearance (Cl)

Tier 0 Tier 1 Tier 2 Tier 3

• Cheap/high-throughput assays required to test large numbers of compounds
• Only measure promising candidates in complex assays
• Can we use ML predictions to prioritise compounds for synthesis/to replace experiments?

in vitro in vitro in vitro in vivo

Absorption
Distribution
Metabolism/Excretion
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Multi-task modelling

Single-task model
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• Motivation: make best use of available data
– Assays are related
– Data-poor assays might benefit from signal in data-rich assays

• Implementation: Chemprop1 (graph-convolutional neural network)
– Input features: chemical graph with basic information about atoms and bonds
– Ensembling (we used n=5)

5

Multi-task modelling

Multi-task

model
Plasma protein bindingEmpagliflozin

input

LogD

Microsomal stability

…

1Yang et al 2019, https://doi.org/10.1021/acs.jcim.9b00237

https://doi.org/10.1021/acs.jcim.9b00237
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Study design

Goals:
• MT models superior to ST approaches (Chemprop and Random Forest) for

data at hand?
• When predicting higher tier assays for a compound: additional benefit of

including available experimental data of lower tiers in training?

Model evaluation:
• Temporal data splits (train on up to 31/12/2020, evaluate on 2021)
• R2 (Coefficient of determination) as primary metric

Data:
• 28 assays arranged in 4 tiers
• Data preparation: curation, filtering, transformations
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Assay datasets

Model scores are reported for subset of assays that reflect overall trends

Tier 0 (n=2) Tier 1 (n=6) Tier 2 (n=14) Tier 3 (n=6)

Training set sizes ~120k

Assays
• logD at pH 2 and 11

Training set sizes
50k – 125k

Assays
• SOL (different pH)
• LM stability

(different species)

Training set sizes
1k – 17k

Assays
• HEP stability

(different 
species/serum
concentrations)

• PPB (different 
species)

• Caco2-
Permeability/Efflux

Training set sizes
2k – 10k

Assays
• In vivo PK (Cl, Vd, F) 

in rat and mouse
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Model evaluation

Tier 0 Tier 1 Tier 2 Tier 3

→MT-Chemprop outperforms ST approaches
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PPB_rat: predicted vs experimental

ST-Chemprop (R2 = 0.569) MT-Chemprop (R2 = 0.680)

PPB [%] Logit 
transformed*

50 0

90 0.95

99 2.00

99.9 3.00

𝑦 = log10
𝑥

1 − 𝑥
*



• Examplary target assay: RHEP_5

• Which auxiliary assays are the most useful?
– Train and evaluate pairwise MT-Chemprop models
– Can we discover factors that determine the success?
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Understanding the success of MT models

R2 ST-Chemprop R2 MT-Chemprop

0.313 0.519
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Understanding the success of MT models (RHEP_5 example)

x-axis: absolute Pearson correlation coefficient
of overlapping training compounds

x-axis: training compounds in auxiliary assay
not included in target assay

→ Size of auxiliary dataset more relevant than correlation for success of MT model
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MT model at design stage vs testing stage

MT model
-> design stage of compound

Training

Test
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Tier 0 Tier 1 Tier 2 Tier 3

MT model+exp
-> testing stage of compound

Tier 0 Tier 1 Tier 2 Tier 3

“Test compounds“ now both in 
training and test set

e.g. data for Tier 0 to Tier 2 available
for training when predicting Tier 3
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Model evaluation

Experimental data of
lower tier assays added
to training data

Tier 1 Tier 2 Tier 3

→MT-Chemprop further improved with experimental data of lower tiers available



➢ MT-Chemprop clearly outperforms ST models on the studied ADME/PK 
datasets at design stage

➢ Data-rich assays seem to be the most useful auxiliary assays in the MT-
model (despite low correlation to target assay)

➢ Further improvements possible at testing stage when experimental data
(earlier assays) of test compounds is added to the training data
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Conclusion
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