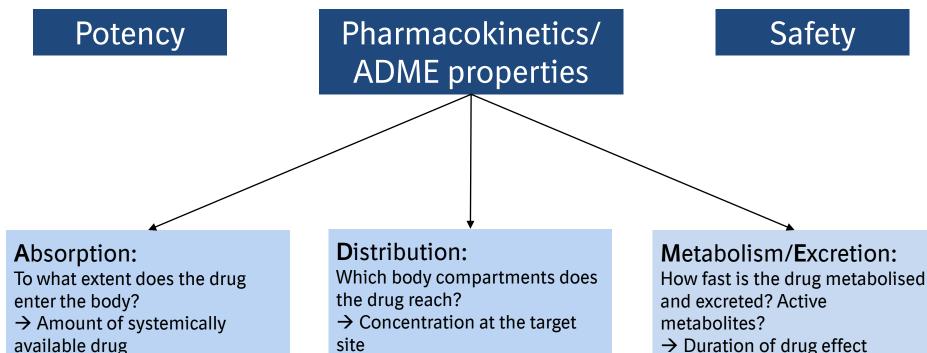
Integrating heterogeneous assay data for ML-based ADME prediction

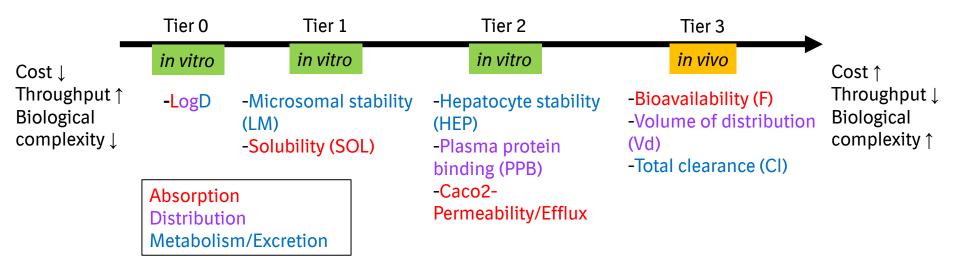
Moritz Walter 9th Joint Sheffield Conference on Chemoinformatics 20/06/2023

Drug discovery as a multi-parameter optimisation problem



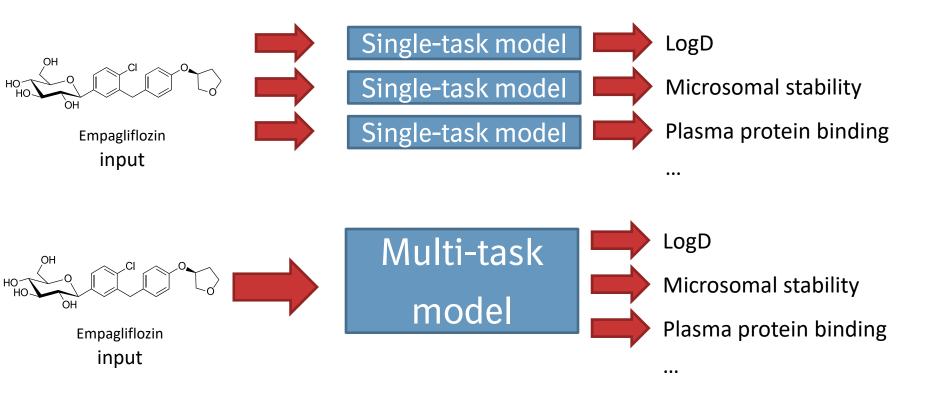
 \rightarrow Duration of drug effect

Measurement of PK/ADME properties

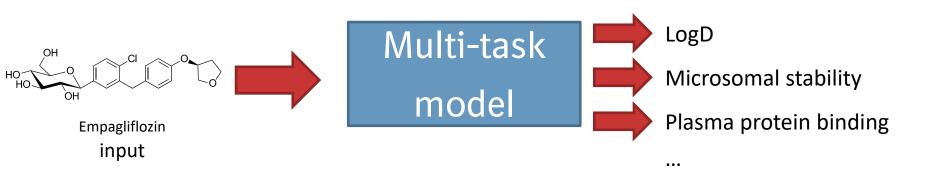


- Cheap/high-throughput assays required to test large numbers of compounds
- Only measure promising candidates in complex assays
- Can we use ML predictions to prioritise compounds for synthesis/to replace experiments?

Multi-task modelling



Multi-task modelling



- Motivation: make best use of available data
 - Assays are related
 - Data-poor assays might benefit from signal in data-rich assays
- Implementation: Chemprop¹ (graph-convolutional neural network)
 - Input features: chemical graph with basic information about atoms and bonds
 - Ensembling (we used n=5)

Study design

Goals:

- MT models superior to ST approaches (Chemprop and Random Forest) for data at hand?
- When predicting higher tier assays for a compound: additional benefit of including available experimental data of lower tiers in training?

Data:

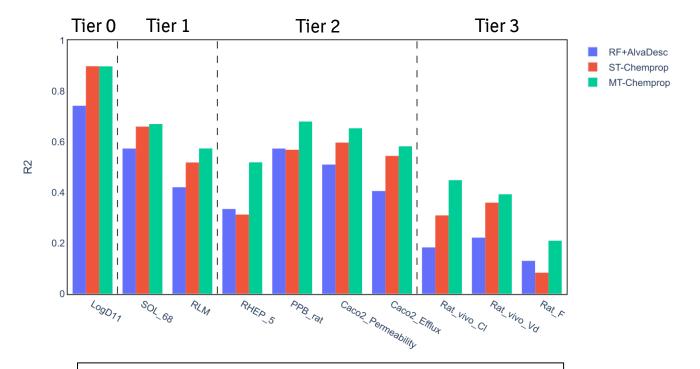
- 28 assays arranged in 4 tiers
- Data preparation: curation, filtering, transformations

Model evaluation:

- Temporal data splits (train on up to 31/12/2020, evaluate on 2021)
- R2 (Coefficient of determination) as primary metric

Tier 0 (n=2)	Tier 1 (n=6)	Tier 2 (n=14)	Tier 3 (n=6)
Training set sizes ~120k Assays • logD at pH 2 and 11	 <u>Training set sizes</u> 50k - 125k <u>Assays</u> SOL (different pH) LM stability (different species) 	 <u>Training set sizes</u> 1k - 17k <u>Assays</u> HEP stability (different species/serum concentrations) PPB (different species) Caco2- 	<u>Training set sizes</u> 2k – 10k <u>Assays</u> • In vivo PK (Cl, Vd, F) in rat and mouse
		Permeability/Efflux	

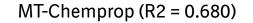
Model scores are reported for subset of assays that reflect overall trends



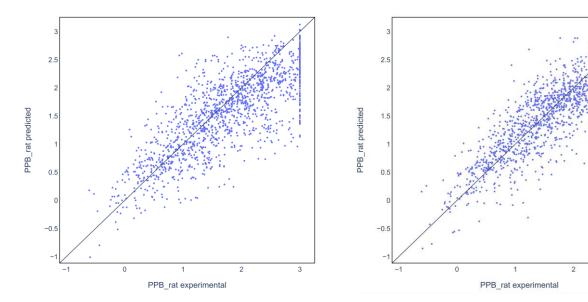
 \rightarrow MT-Chemprop outperforms ST approaches

PPB_rat: predicted vs experimental

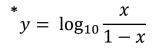
ST-Chemprop (R2 = 0.569)



3



PPB [%]	Logit transformed*
50	0
90	0.95
99	2.00
99.9	3.00



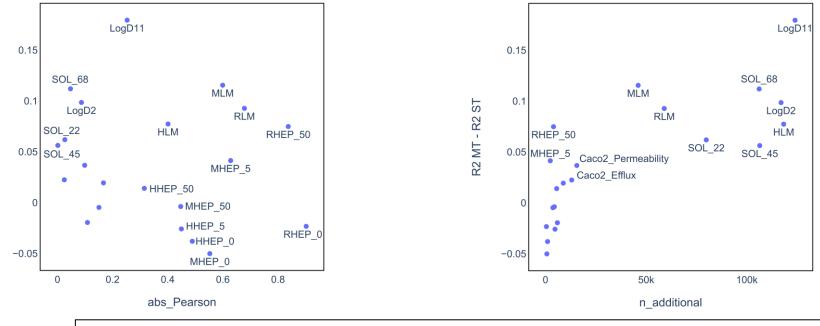
Understanding the success of MT models

- Examplary target assay: RHEP_5
- Which auxiliary assays are the most useful?
 - Train and evaluate pairwise MT-Chemprop models
 - Can we discover factors that determine the success?

R2 ST-Chemprop	R2 MT-Chemprop
0.313	0.519

Understanding the success of MT models (RHEP_5 example)

x-axis: absolute Pearson correlation coefficient of overlapping training compounds



\rightarrow Size of auxiliary dataset more relevant than correlation for success of MT model

x-axis: training compounds in auxiliary assay

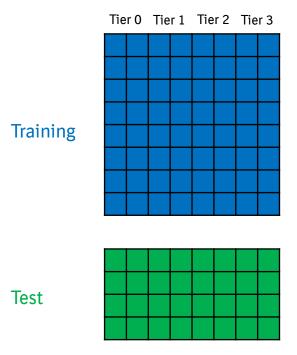
not included in target assay

R2 MT - R2 ST

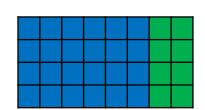
Boehringer Ingelheim

MT model at design stage vs testing stage

MT model -> design stage of compound



Compounds (sorted by synthesis time)



MT model+exp

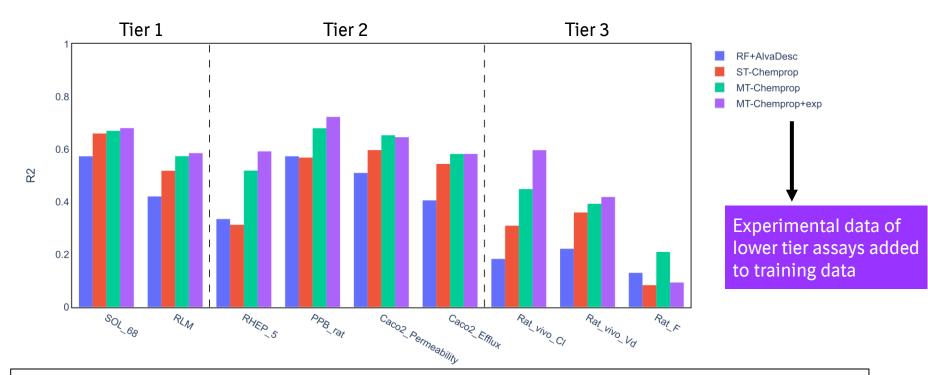
-> testing stage of compound

Tier 0 Tier 1 Tier 2 Tier 3

"Test compounds" now both in training and test set

e.g. data for Tier 0 to Tier 2 available for training when predicting Tier 3

Model evaluation



 \rightarrow MT-Chemprop further improved with experimental data of lower tiers available

- MT-Chemprop clearly outperforms ST models on the studied ADME/PK datasets at design stage
- Data-rich assays seem to be the most useful auxiliary assays in the MTmodel (despite low correlation to target assay)
- Further improvements possible at testing stage when experimental data (earlier assays) of test compounds is added to the training data

Acknowledgements

CompChem at BI Biberach

Dr. Lina Humbeck Dr. Miha Skalic

