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Objectives of Lead Optimisation

Design Array experiments to answer SAR 

questions to enhance potency

Improve physicochemical properties 

Discover new monomer groups of interest.
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How do we traditionally determine SAR

array design

Optimisation at a single position 

allows

– Easy synthesis planning

– Detailed understanding of SAR

Assumes FW type additivity

– Substituent contributions at 

different positions are 

independent and additive

This approach is widely used and 

very successful



Free Wilson theory  R1-Core-R2 

First mathematical technique for quantitative SAR

Response = effect of Core + effect R1 substituent + effect of R2 substituent

Assumptions

– Core makes a constant contribution

– All contributions are additive

– No interactions between core and substituent

– No interaction between substituents

Can only explore chemical space defined by R-group combinations in the 

training set



Assessing Additivity Assumptions

Assessment of Additive/Nonadditive Effects in Structure-Activity 
Relationships: Implications for Iterative Drug Design J. Med. 
Chem. 2008, 51, 7552–7562  Yogendra Patel, Valerie J. Gillet, Trevor 
Howe, Joaquin Pastor, Julen Oyarzabal, and Peter Willett



Design of Experiments (DOE)

Experimental Design approaches are well 
established for the optimization of multi-factor 
experiments, such as reaction conditions. 

Typically these domains utilize „continuous‟ 
variables such as temperature, addition rate, time 
etc

Can these same techniques  be use where each 
variable is categorical?



DOE in Medicinal Chemistry?

We propose that Design of Experiments (DOE) based 

approaches can be applied to array scenarios where the 

full (e.g. M x N) array cannot be synthesized for practical 

reasons. 

By treating each monomer in the array as a categorical 

factor of the design, a balanced fractional (“Sparse”) array 

design can be generated. 

This novel approach can be successfully used to 

understand and  exploit the SAR of a late stage 

optimisation programme



Example of a Sparse Array
1/3rd fraction from an 6 x 12 array

Scatter Plot

Phenol_ID

amine1

amine2

amine3

amine4

amine5

amine6

Scatter Plot

Phenol_ID

amine1

amine2

amine3

amine4

amine5

amine6



Questions

Is the fraction selected sufficient to explore the 

chemistry space?

Can we adequately assess monomer potential?

Can we predict the „missing‟ compounds?

Is it a practical way to direct chemistry synthesis?

Is it an efficient process?

Does it work?



Sparse Array :What are the key steps?

Monomers

• Identify/ select which monomers to 
incorporate into the design

Design

• Create an experimental design template appropriate to the 
investigational space define from the monomer numbers

Optimise

• Allocate monomers into the design so define which 
compounds to actually synthesize

Analyse

• Measure assay endpoints and build free-Wilson models to 
understand the SAR



Monomer Selection

• Identify  appropriate monomers at each 

position 

• Use diversity, physico-chemical, ADME 

and scientific rationale to reduce the 

monomer lists

Calculate the average desirability score 

from each monomer across the whole 

virtual library.

Select the higher scoring ones to be 

included in the Final DOE array design

amines

Mean_NR profile_by_amine

0.35 0.4 0.45 0.5 0.55 0.6

A1

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

A2

A20

A21

A22

A23

A24

A3

A4

A5

A6

A7

A8

A9

aldehydes

Mean_NR profile_by_aldehyde

0.4 0.45 0.5 0.55 0.6

B1

B10

B11

B12

B13

B14

B15

B16

B17

B18

B19

B2

B20

B21

B22

B3

B4

B5

B6

B7

B8

B9

nr score

Binned NR profile

 2 

 109 

 901 

 1298 

 897 

 1382 

 2437 

 2820 

 1624 

 146 

0 0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.81 0.9
0

500

1000

1500

2000

2500

landscape

NR profile

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



Sparse Array :What are the key steps?

Monomers

• Identify/ select which monomers to incorporate into the 
design

Design

• Create an experimental design template 
define from the monomer numbers

Optimise

• Allocate monomers into the design so define which 
compounds to synthesize

Analyse

• Measure assay endpoints and build free-Wilson models 
to understand the SAR



Design Creation (Sparse arrays)

Create an in-complete 
balanced D-Optimal design

– Even numbers of monomers 
at each R position

– D Optimality

– Force balance
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Many software packages around 

which can generate these types of 

Experimental Design



Sparse Array :What are the key steps?

Monomers

• Identify/ select which monomers to incorporate into the 
design

Design

• Create an experimental design template appropriate to the 
investigational space define from the monomer numbers

Optimise

• Allocate monomers into the design to define 
which compounds to actually synthesize

Analyse

• Measure assay endpoints and build free-Wilson models to 
understand the SAR



Which Monomer at which Position?

In principle monomers could be allocated in any order, 

including random, into the DOE array

GSK use an in-house algorithmic approach to allocate 

monomers into the define positions in the DOE array so 

as to optimise the compounds to be synthesized against 

another property

– Eg diversity, 

– lead-likeness, 

– logP etc
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17 Phenol 1 Amine 5 

18 Phenol 8 Amine 3 
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24 Phenol 2 Amine 4 
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Sparse Array :What are the key steps?

Monomers

• Identify/ select which monomers to incorporate into the 
design

Design

• Create an experimental design template appropriate to the 
investigational space define from the monomer numbers

Optimise

• Allocate monomers into the design so define which 
compounds to actually synthesize

Analyse

• Measure assay endpoints and build free-
Wilson models to understand the SAR



FW analysis of monomer contribution

A Free –Wilson analysis is a 

regression based approach to 

establish monomer contributions to a 

predictive model

A high degree of fit suggests that the 

potency profile could be additive in 

nature.

– The presence of outliers may imply 

non-additive behaviour

– Assess potential interaction terms 

between monomers if the output 

appears to be non-additive

Design-Expert® Software
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Example 1 
Sparse array to evaluate  defined N x M 
combinatorial space with  a fractional subset

Design

– 12 Indazoles (R1)

Identified using 

classical SAR 

approaches

– 48 sulphonyl chlorides 

monomers (R2) 
selected from library using 

a variety of criteria

– Lead-likeness 

score

Scatter Plot

Indazoles

R1

R2

•12 monomers per R1

•3 monomers per R2



Measured Potency for the Sparse array

142 of 144 compounds 

from patchwork array 

were synthesised and 

tested

Coloured for potency, 

sized by ligand efficiency

Clear that some 

Indazoles are more 

promising than others

Array

Indazole R1



Sparse Array Data Analysis

Scatter Plot (2)

FW-Fit:RG-All:mol8_GR203498:GTPgS_CCR4_Human_Antagonist_pic50_Value (1)
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Statistical analysis was done to 

evaluate „additivity‟

Free Wilson model: Predicted 

potencies were plotted against 

measured potencies

The FW model show  potential 

excellent additivity with no 

outliers.  
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Predicted Potency for the complete array of 576 

compounds (Fit and Predict), only Actives (pIC50>6.5 shown)

RG-R1 (12 Variants)

RG-R2

(48 Variants)

Array

Indazole R1



Find the predicted most potent compounds that 
haven’t already been synthesized

Array

Indazole R1

RG-R1 (12 variants)

RG-R2

(48 variants)

C1
C2

C4

C5 C6

C3

C7



Predicted potent compounds

All compounds subsequently synthesized had measured potencies 

within +/- 0.2 pIC50 of the predicted value

Validated the Additivity assumption

Identified promising alternatives which were sent for further PK 

analysis – potential back up to the current pre-candidate

C4

Predicted GTPgS = 7.5

BEI = 14.2

Measured = 7.4

C2
Predicted GTPgS = 7.5

BEI = 13.5

Measured = 7.6

C5

Predicted GTPgS = 7.6

BEI = 15.6

Measured = 7.5

C3

Predicted GTPgS = 7.5

BEI = 14.8

Measured = 7.3

C1
Predicted GTPgS = 7.6

BEI = 16.0

Measured = 7.6



CAT friendly example 
Sparse Array Automation

CAT : Automated array chemistry system

A particular design (nicknamed the Tetris  array) which is „array 

automation‟ friendly and thus allows these investigational approaches 

to be carried out efficiently from a synthetic perspective.



Exploration of Chemical space coverage for a Dual 
targetting programme
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Status of exploration

32 R4 and 12 R6 monomers were chosen for 

inclusion in Sparse array



CAT friendly 8 (from 32) x 12 Tetris Array

The experimental design 
chosen is a 8 x12 chosen 
from a potential 32 x 12 fully 
enumerated array (384 
potential compounds). 

– (¼ fraction)

Each coloured block 
represents one of the 32 R4 
monomers

– Each R4 monomer is used 3 
times

– Each R6 monomer is used 
12 times
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Sparse array results

Using the CAT the 
synthesis was done 
efficiently and effectively

– Synthesis was actually done  
using 8 linear (1x12) arrays

For the Sparse array 
synthesis of 77 of the 96 
compounds was achieved 
and the compounds 
delivered to screening.

– This is approximately 75% 
of full sparse array

– Only 20% of the fully 
enumerated array
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Monomer contribution

The Programme team 

concluded that the 

chemistry within this area of 

chemical space was well 

understood wrt target  

potency.

The Programme team 

predicted potent analogues 

with targetted physchem

profiles for synthesis
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Further Developments Dual target 

The monomers chosen in 
the array were selected to 
create Primary actives but 
were not thought likely to 
have any potential in 
Secondary target assay

However, surprisingly 14 
compounds were found to 
be active in the second 
assay

– Currently being followed 
up in the programme team 
as potential dual 
antagonists

FW (2)
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EXAMPLE 3
EXTENDED 3 RG TETRIS SPARSE ARRAY

3 points of change on the molecule

Acids

Core
Phenols



Extended 3 RG Tetris Sparse array

Cores    (A) = 3 (These were used to explore a stereo chemistry question)

Phenols (B) = 4

Acids     (C) = 24

All acids represented 3 times

3x4x24 = 288 compounds

25% of full array synthesised

Distribution „balanced‟

Extended TETRIS array

Coloured by Acid monomer group



Latin Squares: Symmetrical design spaces

Useful for n x n x n problems
where n = number of monomers in each RG position

Eg 6 R1 x 6 R2 x 6 R3

A 1/n fraction is selected

OTHER DESIGN TYPES

N
R1R2

R3



Three RG positions – Latin Squares

Scatter Plot
Pie Chart
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Each possible pair of monomers is present 

once and that each monomer is present an 

equal number of times – defined by the array 

dimensions.

Predictive Array Design: LIPKIN, ROSE,SAR and QSAR in Environmental Research, 
2002 Vol 13 (3-4) pp425-432



Pros and Cons of Sparse array approaches

Objective exploration 
generates an optimal data 

set for ANOVA / Free-Wilson 
analysis.

Complete evaluation of 
potency response within the 

design space from only a 
fraction of the possible 

compounds

Defined endpoint to the work

Excellent data set for QSAR

Chemistry may be more 
difficult to carry-out 

Needs a reasonable 
resource commitment 

upfront

Needs majority of 
compounds chosen in the 

array to be made and 
measured for the analysis to 

be robust

Assumes Additivity (but then 
so does Linear SAR 

exploration)



Learnings from experience

Ideally 3 examples minimum for each monomer within the 

design, although 2 will work for a robust assay and 

chemistry

Need to have confidence in getting some active 

compounds

– If all the compounds are inactive its difficult to fit a 

model!

Confidence in ability to synthesize compounds

– Some loss of particular compounds can be tolerated 

but if whole reactions fail then  the array design will be 

compromised



Summary

Experimental Design may provide an alternative /complementary strategy 

which may be suitable in some circumstances

– E.g. Initial exploration of new monomer space

– Identification of back up compounds 

– Establish Addivity in the series

Efficient Lead Optimisation by exploring more than one point of 

change at the same time on the molecular template

Can unearth some surprises which may never have been found by 

traditional processes 

There are different design types for different situations

– Software is available to create the designs

– Work well in situations where the bespoke synthesis is contracted out
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