

The use of Design of Experiments to develop Efficient Arrays for SAR and Property Exploration

Chris Luscombe, Computational Chemistry GlaxoSmithKline

Summary of Talk

- Traditional approaches
- SAR
- Free-Wilson
- Design of experiments
- Examples
- Learnings
- Conclusions

Objectives of Lead Optimisation

- Design Array experiments to answer SAR questions to enhance potency
- Improve physicochemical properties
- Discover new monomer groups of interest.

How do we traditionally determine SAR

- Optimisation at a single position allows
 - Easy synthesis planning
 - Detailed understanding of SAR
- Assumes FW type additivity
 - Substituent contributions at different positions are independent and additive
- This approach is widely used and very successful

Free Wilson theory R1-Core-R2

- First mathematical technique for quantitative SAR
- Response = effect of Core + effect R1 substituent + effect of R2 substituent

Assumptions

- Core makes a constant contribution
- All contributions are additive
- No interactions between core and substituent
- No interaction between substituents
- Can only explore chemical space defined by R-group combinations in the training set

Assessing Additivity Assumptions

Assessment of Additive/Nonadditive Effects in Structure-Activity Relationships: Implications for Iterative Drug Design J. Med. Chem. 2008, 51, 7552–7562 Yogendra Patel, Valerie J. Gillet, Trevor Howe, Joaquin Pastor, Julen Oyarzabal, and Peter Willett

Design of Experiments (DOE)

- Experimental Design approaches are well established for the optimization of multi-factor experiments, such as reaction conditions.
- Typically these domains utilize 'continuous' variables such as temperature, addition rate, time etc
- Can these same techniques be use where each variable is categorical?

DOE in Medicinal Chemistry?

- We propose that Design of Experiments (DOE) based approaches can be applied to array scenarios where the full (e.g. M x N) array cannot be synthesized for practical reasons.
- By treating each monomer in the array as a categorical factor of the design, a balanced fractional ("Sparse") array design can be generated.
- This novel approach can be successfully used to understand and exploit the SAR of a late stage optimisation programme

Example of a Sparse Array 1/3rd fraction from an 6 x 12 array

Questions

- Is the fraction selected sufficient to explore the chemistry space?
- Can we adequately assess monomer potential?
- Can we predict the 'missing' compounds?
- Is it a practical way to direct chemistry synthesis?
- Is it an efficient process?
- Does it work?

Sparse Array : What are the key steps?

Monomer Selection

- Identify appropriate monomers at each position
- Use diversity, physico-chemical, ADME and scientific rationale to reduce the monomer lists
- Calculate the average desirability score from each monomer across the whole virtual library.
- Select the higher scoring ones to be included in the Final DOE array design

100

0.18

0.27

0.36

Binned NR profile

0.45

0.54

0.63

0.72

0.09

146

0.81

Sparse Array : What are the key steps?

Design Creation (Sparse arrays)

Create an in-complete balanced D-Optimal design

- Even numbers of monomers at each R position
- D Optimality

Phenol ID

Force balance

Many software packages around which can generate these types of Experimental Design

Sparse Array : What are the key steps?

Which Monomer at which Position?

- In principle monomers could be allocated in any order, including random, into the DOE array
- GSK use an in-house algorithmic approach to allocate monomers into the define positions in the DOE array so as to optimise the compounds to be synthesized against another property
 - Eg diversity,
 - lead-likeness,
 - logP etc

Compounds	A:Phenols	B:Amines
2	L Phenol 3	Amine 2
	2 Phenol 6	Amine 6
3	3 Phenol 7	Amine 5
4	4 Phenol 3	Amine 3
Į.	5 Phenol 9	Amine 5
6	5 Phenol 6	Amine 1
7	7 Phenol 10	Amine 4
8	3 Phenol 10	Amine 2
9	Phenol 8	Amine 4
10) Phenol 5	Amine 3
11	L Phenol 4	Amine 6
12	2 Phenol 5	Amine 1
13	3 Phenol 1	Amine 1
14	1 Phenol 11	Amine 5
15	5 Phenol 12	Amine 2
16	6 Phenol 12	Amine 6
17	7 Phenol 1	Amine 5
18	3 Phenol 8	Amine 3
19	Phenol 7	Amine 4
20	Phenol 11	Amine 6
22	L Phenol 2	Amine 1
22	2 Phenol 9	Amine 3
23	3 Phenol 4	Amine 2
24	1 Phenol 2	Amine 4

Sparse Array : What are the key steps?

FW analysis of monomer contribution

- A Free –Wilson analysis is a regression based approach to establish monomer contributions to a predictive model
- A high degree of fit suggests that the potency profile could be additive in nature.
 - The presence of outliers may imply non-additive behaviour
 - Assess potential interaction terms between monomers if the output appears to be non-additive

Actual

Example 1 Sparse array to evaluate defined N x M combinatorial space with a fractional subset

Design

- 12 Indazoles (R1)
 - Identified using classical SAR approaches
- 48 sulphonyl chlorides monomers (R2)
 - selected from library using a variety of criteria
 - Lead-likeness score

R1

12 monomers per R13 monomers per R2

Measured Potency for the Sparse array

- 142 of 144 compounds from patchwork array were synthesised and tested
- Coloured for potency, sized by ligand efficiency
- Clear that some Indazoles are more promising than others

Sparse Array Data Analysis

- Statistical analysis was done to evaluate 'additivity'
- Free Wilson model: Predicted potencies were plotted against measured potencies
- The FW model show potential excellent additivity with no outliers.

Measured potency

Predicted Potency for the complete array of 576 compounds (Fit and Predict), only Actives (pIC50>6.5 shown)

Find the predicted most potent compounds that haven't already been synthesized

Indazole R1

RG-R1 (12 variants)

Predicted potent compounds

- All compounds subsequently synthesized had measured potencies within +/- 0.2 pIC50 of the predicted value
- Validated the Additivity assumption
- Identified promising alternatives which were sent for further PK analysis - potential back up to the current pre-candidate

C1 Predicted GTPgS = 7.6 Predicted GTPgS = 7.5 BEI = 16.0Measured = 7.6

C4 Predicted GTPgS = 7.5 BFI = 14.2Measured = 7.4

C2 BEI = 13.5Measured = 7.6

C5 Predicted GTPgS = 7.6BFI = 15.6Measured = 7.5

C3 Predicted GTPgS = 7.5BEI = 14.8Measured = 7.3

CAT friendly example Sparse Array Automation

- CAT : Automated array chemistry system
- A particular design (nicknamed the Tetris array) which is 'array automation' friendly and thus allows these investigational approaches to be carried out efficiently from a synthetic perspective.

Exploration of Chemical space coverage for a Dual targetting programme

32 R4 and 12 R6 monomers were chosen for inclusion in Sparse array

CAT friendly 8 (from 32) x 12 Tetris Array

 The experimental design chosen is a 8 x12 chosen from a potential 32 x 12 fully enumerated array (384 potential compounds).

- (1/4 fraction)

- Each coloured block represents one of the 32 R4 monomers
 - Each R4 monomer is used 3 times
 - Each R6 monomer is used 12 times

R4 Monomers

Sparse array results

- Using the CAT the synthesis was done efficiently and effectively

 Synthesis was actually done using 8 linear (1x12) arrays
- For the Sparse array synthesis of 77 of the 96 compounds was achieved and the compounds delivered to screening.
 - This is approximately 75% of full sparse array
 - Only 20% of the fully enumerated array

Monomer contribution

- The Programme team concluded that the chemistry within this area of chemical space was well understood wrt target potency.
- The Programme team predicted potent analogues with targetted physchem profiles for synthesis

Further Developments Dual target

- The monomers chosen in the array were selected to create Primary actives but were not thought likely to have any potential in Secondary target assay
- However, surprisingly 14 compounds were found to be active in the second assay
 - Currently being followed up in the programme team as potential dual antagonists

RG_R6 Code

Sized by Primary potency coloured by R4 group

EXAMPLE 3 EXTENDED 3 RG TETRIS SPARSE ARRAY

3 points of change on the molecule

Extended 3 RG Tetris Sparse array

Cores (A) = 3 (These were used to explore a stereo chemistry question) Phenols (B) = 4Acids (C) = 24

All acids represented 3 times

3x4x24 = 288 compounds

25% of full array synthesised

Distribution 'balanced'

Extended TETRIS array

Coloured by Acid monomer group

OTHER DESIGN TYPES

Latin Squares: Symmetrical design spaces

Useful for $n \times n \times n$ problems where n = number of monomers in each RG position

Eg 6 R1 x 6 R2 x 6 R3

A 1/n fraction is selected

Three RG positions – Latin Squares

Predictive Array Design: LIPKIN, ROSE, SAR and QSAR in Environmental Research, 2002 Vol 13 (3-4) pp425-432

Factor 2

Factor 3 Eactor 1 Α2 Factor 2

Each possible pair of monomers is present once and that each monomer is present an equal number of times – defined by the array dimensions.

Pros and Cons of Sparse array approaches

Learnings from experience

- Ideally 3 examples minimum for each monomer within the design, although 2 will work for a robust assay and chemistry
- Need to have confidence in getting some active compounds
 - If all the compounds are inactive its difficult to fit a model!
- Confidence in ability to synthesize compounds
 - Some loss of particular compounds can be tolerated but if whole reactions fail then the array design will be compromised

Summary

- Experimental Design may provide an alternative /complementary strategy which may be suitable in some circumstances
 - E.g. Initial exploration of new monomer space
 - Identification of back up compounds
 - Establish Addivity in the series
 - Efficient Lead Optimisation by exploring more than one point of change at the same time on the molecular template
 - Can unearth some surprises which may never have been found by traditional processes
- There are different design types for different situations
 - Software is available to create the designs
 - Work well in situations where the bespoke synthesis is contracted out

Acknowledgements

- Tony Cooper
- Heather Hobbs

Medicinal Chemistry

- Nick Barton
- Stephen Pickett
- Darren Green

Computational Chemistry

Thank-You

References to literature to date

- How design Concepts can Improve Experimentation: Mager 1997
 - Use of iterative search techniques to find monomers which have the required levels of particular physico chemical properties to fit into an ideal experimental design
- Statistical Molecular Design of BB for CombiChem: Linusson, Wold etal 1999
 - Selection of BB's using t- scores of the enumerated library as variables and then applying D-Optimal, Space Filling or Cluster based selection strategies
- Predictive Array Design: LIPKIN, ROSE etal, 2002
 - Use of Latin Squares
 - Simulated Annealing for Monomer assignment