

HYDE - Scoring for Lead Optimization

HYDEing the False Positives

Nadine Schneider

Matthias Rarey Center for Bioinformatics Hamburg

Christian Lemmen

Gudrun Lange Robert Klein

υн

HYDE = **HY**drogen bonding and **DE**solvation

"Thus, a primary question in molecular design should be which donors and acceptors need to be satisfied and not how more hydrogen bonds can be formed."

(Martin Stahl, A medicinal chemist's guide to molecular interactions, JMedChem, 2010)

HYDE = **HY**drogen bonding and **DE**solvation

HYDE describes consistently hydrogen bonds, the hydrophobic effect and desolvation

4

HYDE Scoring Function* - Concept

*Reulecke et al., ChemMedChem, 2008

HYDE – Atom-based Desolvation

 $\Delta G_{\text{desolvation}}^{i} = -2.3 \text{RT} \left(\text{acc}_{\text{free}}^{i} - \text{acc}_{\text{bound}}^{i} \right) \text{plogP}_{i}$

plogP_i

Atom solvation parameter derived from octanol/water partition coefficients

accⁱ

Solvent accessibility of atom *i* with respect to the chemical model

plogP_i – Atom-based Hydrophobicity

- - 6

- Calibration dataset:
 - 458 small, simple molecules taken from the Starlist^{*}
 - 21 plogP descriptors used

* Hansch C. et al., American Chemical Society, 1995 Universität Hamburg

HYDE – Atom-based Interaction

$$\Delta G_{\text{interaction}}^{i} = \frac{2.3 \text{RT}}{f_{\text{sat}}} \left(\text{sat}_{\text{bound}}^{i} - \text{sat}_{\text{free}}^{i} \right) \text{ plogP}_{i}$$

satⁱ

Number of intermolecular and intramolecular interactions (degree of saturation)

f_{sat}

Saturation factor describing the incomplete saturation of the hydrogen bond network in solvent water

Binding Mode Analysis with HYDE

8

H

Universität Hamburg

total desolvation cost	10.6 kJ/mol
ligand aromatic oxygen	2.4 kJ/mol
receptor carbonyl oxygen	8.2 kJ/mol

July 2010

Binding Mode Analysis with HYDE

9

Binding Mode Analysis with HYDE

10

11

The Cost of a Hydrogen Bond

Structure-based design of novel Checkpoint kinase 1 inhibitors: Insights into hydrogen bonding and protein-ligand affinity *

July 2010

υн

The Cost of a Hydrogen Bond

12

13

The Cost of a Hydrogen Bond

14

The Cost of a Hydrogen Bond

15

HYDE – Ranking Power

- * Cheng T et al., JChemInfMod, 2009
 - PDBbind Coreset 2007: 195 complexes with high resolution and measured K_i values
 - HYDE ranks 29 of the 65 cases in the right order
 - Sucuess rate: 45 %

Table 4. Success Rates of 16 Scoring Functions in "Ranking*Power" Evaluation on the Primary Test Set

	success rates (%)	
scoring function ^a	on original complex structures	on optimized complex structures
X-Score::HSScore	58.5	52.3
DS::PLP2	53.8	46.2
DrugScore ^{CSD}	52.3	49.2
SYBYL::ChemScore	47.7	52.3
SYBYL::D-Score	46.2	46.2
SYBYL::G-Score	46.2	36.9
GOLD::ASP	43.1	49.2
DS::LUDI3	43.1	43.1
DS::Jain	41.5	35.4
DS::PMF	41.5	35.4
SYBYL::PMF-Score	38.5	33.8
GOLD::ChemScore	36.9	41.5
DS::LigScore2	35.4	47.7
GlideScore-XP	33.8	35.4
by NHA ^b	32.3	32.3
SYBYL::F-Score	29.2	36.9
GOLD::GoldScore	23.1	38.5

^{*a*} Scoring functions are ranked by their success rates based on original complex structures. ^{*b*} Ranking by the number of heavy atoms on each ligand.

S

HYDE on Astex Dataset*

*Hartshorn M. J. et al , JMedChem, 2007

1S19 vitamin D nuclear receptor Calcipotriol

 $\begin{array}{l} \Delta G_{\text{experimental}} \\ \Delta G_{\text{HYDE}} \end{array}$

-51 kJ/mol -95 kJ/mol

huge hydrophobic ligand perfect binding mode EC50 value instead of K_i

HYDE on Astex Dataset

17

factor VIIa G17905 $\Delta G_{experimental} \qquad -54 \text{ kJ/mol}$ $\Delta G_{HYDE} \qquad -18 \text{ kJ/mol}$

1YGC

many unsaturated polar atoms in the interface

HYDE on Astex Dataset

18

HYDE – Compound Affinity Categorization

Regan et al., JMedChem, 2002 19

HYDE – Compound Affinity Categorization

tics

or cs

21

Thermodynamic Analysis of Thrombin Inhibitors

More than a Simple Lipophilic Contact: A Detailed Thermodynamic Analysis of Nonbasic Residues in the S1 Pocket of Thrombin [Baum et al., JMB, 2009]

Center for <u>Bioinform</u>atics

Superposition of Thrombin Inhibitors

22

2ZFF 2ZDV 2ZF0 2ZC9 2ZDA

UH H Universität Hamburg

Nadine Schneider

July 2010

HYDE Analysis of Thrombin Inhibitors

Nadine Schneider

July 2010

HYDE Analysis of Thrombin Inhibitors

25

HYDE Analysis of Thrombin Inhibitors

26

HYDE Analysis Tool: LeadIT GUI

UΗ

Conclusions

27

- describes consistently hydrogen bonds, the hydrophobic effect and desolvation
- scores single atom exchanges correctly
- avoids false positives due to desolvation penalties
- facilitates the analysis of lead structures

Outlook

 HYDE specific geometric optimization of proteinligand complexes

Acknowledgement

- Gudrun Lange
- Robert Klein

- Hans Briem
- Kristin Engels

Sally Hindle

niversität Hamburg

UH

- Martina Brümmer
- Holger Claußen
- Marcus Gastreich
- Christian Lemmen

- Matthias Rarey
- Katrin Stierand
- Lennart Heinzerling
 - Sascha Urbaczek

Thank you for your attention