A large-scale application study of the 2D drawing tool PoseView

Katrin Stierand | Matthias Rarey

http://poseview.zbh.uni-hamburg.de

Two-dimensional visualization of molecular structures is a well established procedure to communicate results in drug design processes. We developed PoseView ${ }^{[1,2]}$, a tool that automatically generates diagrams of macromolecular complexes showing the ligand and the interacting receptor compounds as structure diagrams and the interaction pattern in between. An application study on complexes taken from the $\mathrm{PDB}^{[3]}$ showed high success rates; 92% of 189,000 input complexes could be drawn. In the following, we will present the interaction model, a method overview and the results of the application study.

GALLERY

CONCLUSION

PoseView offers the opportunity to facilitate the evaluation of different protein-ligand complexes. It is available as web-service and can help scientists to quickly compare research results with related complexes. The application on PDB data showed that the tool is able to draw large parts of its input complexes in good quality. Due to short computing times it is also possible to generate diagrams online, see http://poseview.zbh.uni-hamburg.de.

PDB APPLICATION STUDY

We tested the performance of PoseView on complexes provided by the $\mathrm{PDB}^{[3]}$. While the protein structures originate from the PDB, the ligands are taken from the Ligand Expo database ${ }^{[4]}$, which provides for many of the PDB structures one or more co-crystallized small molecules. The presented diagrams below summarize statistics for input filtering, success rates and computing times.

Input filtering
 Layout quality ratio

Computing times

This diagram shows the computing time depends on the number of interactions. The blue diamonds denote the number of complexes for each bin. Over 90% of all complexes have less than 11 interactions and their 2 D layout can be computed in the range of milliseconds ton seconds.

The ratio of dia gram layout quality changes with the Changes wint of internumber of inter-
actions. While the actions. While the
number of good number of good
layouts decreases layouts decreases
with the growing number of interactions, the layouts containing unsolvable collisions show the opposite behavior. For each of the layout types an example diagram is shown in the cor responding box.

COMPLEX DIAGRAM GENERATION

If interactions between ligand and receptor are not part of the input, they are estimated by a built-in interaction model. It is based on simple distance and angle criteria and considers five different interaction types. In combination with the complex 3D structure it is the input of the layout algorithm.

[1] K. Stierand, M. Rarey, ChemMedChem, 2007, 2: 853
[2] K. Stierand, P. Maaß, M. Rarey, Bioinformatics 2006, 22, 1710 [3]H.Berman et al., Acta Cristallographica Section D, 2002, 58: 899. [4] Z.Feng et al., Bioinformatics 2004, 20: 2153.

Katrin Stierand
stierand@zbh.uni-hamburg.de Matthias Rarey - rarey@zbh.uni-hamburg.de ZBH Center for Bioinformatics, Bundesstr. 43, 20146 Hamburg This project is funded by Klaus Tschira Stiftung Gemeinnützige GmbH

