

Molecule Alignment using Shapelets E. Proschak¹, M. Rupp¹, S. Derksen¹, G. Schneider¹

proschak@bioinformatik.uni-frankfurt.de

1: Johann Wolfgang Goethe-Universität, **Beilstein Endowed Chair for Cheminformatics** Siesmayerstr. 70, 60323 Frankfurt am Main, Germany

Introduction

Complementarity of molecular surfaces is crucial for molecular recognition. A method for representation of molecular shape is presented^[1]. We decompose the molecular surface into commensurate patches with defined shape by fitting hyperbolical paraboloids onto a triangulated isosurface of the Gaussian model of a molecule. As a result of this decomposition we obtain a 3D graph representation of the molecular shape, which can be used for shape matching.

Surface Calculation

first step in our shape matching The procedure is the calculation of the molecular surface. We describe a molecule M with a continuous spatial function. Specifically, we followed the established concept of representing a molecule as a sum of modified Gaussian functions (Eq. 1)^[2,3]

N: number of atoms r_n : VdW - radii

We used the Marching Cubes Algorithm^[4] to extract the isosurface and reduced the number of surface points using a mesh decimation technique known as "Welding Vertices"^[5]. We obtained a smooth isosurface representation of a molecule.

Fitting hyperbolic parabolc

We adopted a technique used by Zachmann^[6] to approximate local surface curvature. We fitted a hyperbolical paraboloid (Eq. 2) into a surface patch with a given radius using least mean squares (Eq. 3). The obtained hyperbolic paraboloids can be classified according to the shape index (SI) (Eq. 4).

p(u,v) = (u

 $E(H) = \sum (n_i - p(u_i, v_i, H))^2$ (3)

 $SI(p_r) = atar$

 k_1, k_2 : Eigenvectors of H

Typical hyperbolical paraboloids. a. Bag (S)≈-1). b. Cleft (SI≈-0.5). c. Plane (SI≈0). d. Ridge (SI≈0.5). e. Knob (SI≈1)

http://www.modlab.de

Supported by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften

- Fitting of a hyperbolic paraboloids at every point of the surface
- Calculation of RMSD of fitted hyperbolic paraboloid
- Computation of local RMSD minima on the surface
- Filtering minima with a curvature cutoff
- Cutting out surface patches with minimal RMSD

 \dot{c}_n : center coordinates

$$v$$
) H $\begin{pmatrix} u \\ v \end{pmatrix}$ (2)

$$n(\frac{k_1 + k_2}{k_1 - k_2}) \text{ with } (4)$$

Surface decomposition of a Factor Xa ligand FXV. Red shapes indicate planes and knobs of the molecular surface.

Matching Procedure

- Knobs and planes are vertices of a fully connected graph
- Edges are labled with spatial distance between the vertices
- Corresponding shapelets found by clique detection (Bron-Kerbosch) algoritm)^[7] on association graph.
- Transformation matrix calculated with Kabsch alignment^[8] of corresponding shapelets

JOHANN WOLFGANG

UNIVERSITÄT FRANKFURT AM MAIN

Alignment results

We evaluated the performance of Shapelets on two datasets of X-ray structures of Factor Xa and dehydrofolate reductase (DHFR). We reached at least comparable performance to previously published surface-based alignment tools^[9,10].

Outlook

We currently develop a virtual screening tool based on Shapelets molecular alignment. We obtained promising retrospective and prospective results, to be published soon.

References

- [1] Proschak et al. (2007) J. Comput. Chem. accepted.
- [2] Blinn (1982) ACM Transactions on Graphics 1, 235-256.
- [3] Grant & Pickup (1995) *J. Phys. Chem.* 99, 3503-3510. [4] Lorensen & Cline (1987) Computer Graphics 21, 163-169.
- [5] Dunn & Parberry (2002) 3D Math Primer for Graphics and Game Development, 331.
- [6] Zachmann et al. (1992) J. Comput. Chem. 13, 76-84.
- [7] Bron & Kerbosch (1973) Communications of the ACM 16, 575-577.
- [8] Kabsch (1976) Acta Cryst. A32, 922-923.
- [9] Hofbauer et al. (2004) JCICS 44, 837-847.
- [10] Cosgrove et al. (2000) JCAMD 14, 573-591.

Query	Target	RMSD [Å]
815	FXV	1.64
	PR2	0.52
	RPR	1.14
	Z34	2.07
FXV	PR2	1.39
	RPR	0.86
	Z34	1.83
PR2	RPR	1.30
	Z34	3.35
RPR	Z34	1.52
mean		1.56
sd		0.774

Target	RMSD [Å]
MTX	1.18
TMP	3.12
WRB	1.13
TMP	2.14
WRB	0.85
WRB	1.63
	1.68
	0.840
	Target MTX TMP WRB TMP WRB WRB