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1. Introduction

Although great progress has been made, current docking methodologies
often fail to correctly prioritise the crystallographic observed ligand
pose. Table 1 presents the findings of a recent study’; whilst the correct
binding mode is elucidated in many cases, the scoring functions
employed fail to rank the correct poses above all others:
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Method Binding mode is | Binding mode is score
found top ranked pose

LigandFit 24 7

GOLD 47 10

DOCK 4 0

FlexX 39 17

Glide 26

9
Table 1- Variation in correctly ranked binding modes for differ
docking methodologies against 69 protein targets.

This poster introduces a novel approach to scoring functlon de
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t of scoring functions.

Here a custom implementation of the
nondominated sorting genetic algorithm-II
(NSGA-II) is employed®. The optimisation
evolves a population of solutions by
selection, mutation and recombination,
each representing a set of scoring function
coefficients. Each of the solutions are
evaluated against the descriptors of every
pose. All poses are then ordered by their
relative score (figure 2). The multiobjective
optimisation problem is then to maximise
the rank position of the known ligand
binding mode in every co-crystal. The
output of the NSGA-II is the set of least
worst solutions to this multiobjective
ranking problem (figure 3).

i Analysis: The curved 1xm6 and 1pmn (figure 4) plot indicates a trade-off front

2. Scoring Function and Descriptor Se

A subset of the ChemScore? (CS) scoring fi
are used (table 2). The scoring function e
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protein interaction term. The sum o
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docking; it consi
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3. Dataset and descriptor generai

The newly available Astex diverse dat:
has been employed for this work. For each
of the 85 protein co-crystals the ligand was
rescored using the CS function. The ligan:

was then docked using

GOLD GA parameters were deliberately set’
such that the docking run produced a range
these are hence
termed the decoy poses. The decoys were
then inspected visually by overlay to the
crystal pose to ensure sufficient deviance
from the crystallographic ligand binding

of suboptimal poses,

mode.

For each decoy pose and the rescored binding mode pose for each co-crystal a subset of the
CS ligand-protein binding descriptor terms was extracted. A principal components analysis
(PCA) was then performed to understand the distribution of descriptor values across the
protein classes. The PCA indicated some localisation of the descriptors between class

GOLD*, however th

ehaviour, good solutions for one are mutually exclusive of the other - no single
function can be found to satisfy both. This behaviour is also observed clearly for

xm6 and 1oyt. However, 1sqn and loyt show complementary scoring functions, a

cluster of good solutions for both is visible close to optimal. It is also observed that
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suboptimal solutions score equally as badly only for a limited range then show an
: independent, and more scattered, relationship. The 1pmn and 1sqn plot is highly
scattered suggesting that scoring functions are independent of each other.
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Figure 4 - Scatter plot of scoring functions for a
four co-crystal optimisation.

tely score both classes.
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‘ Trade-off scoring functions

Gep!
inctions two class optimisation.
g function combining both objectives)
ring function for both protein classes. This

onclusions

single scoring function for docking - derived

from regression or other single objective
echniques - cannot perform well against all
argets.

o Initial findings indicate clear contentions do exist
in optimisation against different co-crystals.

e By applying a MOEA, it is demonstrated that
customised scoring functions can be derived that
are appropriate for either a particular protein or
protein class.

o Further refinement of the protocol is required
including the cross-docking of a diverse set of
ligands to each co-crystal — better approximating
the actual difficulty inherent in the docking
problem.
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