
Iain Mott†, Peter Gedeck‡ and Val Gillet†

Customised Scoring Functions for Docking

1. Introduction
Although great progress has been made, current docking methodologies 
often fail to correctly prioritise the crystallographic observed ligand 
pose. Table 1 presents the findings of a recent study1; whilst the correct 
binding mode is elucidated in many cases, the scoring functions 
employed fail to rank the correct poses above all others:

This poster introduces a novel approach to scoring function development 
that applies a multiobjective methodology. Given the diversity and varied 
nature of binding sites, we argue that a single scoring function can never 
adequately approximate relative binding affinities in different target 
classes. This work explores the potential to develop class or protein 
specific scoring functions, initially investigating the degree of contention 
between different proteins. 

Method Binding mode is 
found 

Binding mode is 
top ranked pose

24 7
10
0
17
9

47
4
39
26

LigandFit
GOLD
DOCK
FlexX
Glide

Table 1 - Variation in correctly ranked binding modes for different 
docking methodologies against 69 protein targets.

3. Dataset and descriptor generation
The newly available Astex diverse dataset3

has been employed for this work. For each 
of the 85 protein co-crystals the ligand was 
rescored using the CS function. The ligand 
was then docked using GOLD4, however the 
GOLD GA parameters were deliberately set 
such that the docking run produced a range 
of suboptimal poses, these are hence 
termed the decoy poses. The decoys were 
then inspected visually by overlay to the 
crystal pose to ensure sufficient deviance 
from the crystallographic ligand binding 
mode.
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For each decoy pose and the rescored binding mode pose for each co-crystal a subset of the 
CS ligand-protein binding descriptor terms was extracted. A principal components analysis 
(PCA) was then performed to understand the distribution of descriptor values across the 
protein classes. The PCA indicated some localisation of the descriptors between classes.

2. Scoring Function and Descriptor Selection

4. Multiobjective Optimisation

In a previous study5 an evolutionary 
algorithm (EA) was applied to optimise 
scoring functions for docking. This method 
met with limited success because it was not 
possible to evolve a scoring function that 
performed well across a wide range of protein 
targets. In this work we use a similar ranking 
methodology, however the EA has been 
replaced with a multiobjective evolutionary 
algorithm (MOEA). This class of machine 
learning algorithms is useful for real world 
problems where there exists no single 
response variable, or objective, and where each 
different objective conflicts. 

6. Results: Two class optimisation – Kinases / Nuclear Receptors
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Figure 5 - Scoring Functions two class optimisation.
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Figure 5 shows the two objective -
average rank - optimisation of eleven 
Kinase and nine Nuclear Receptor 
targets. Three repeat optimisations 
were performed, all of which 
approximated the same front. As 
expected no single scoring function 
(such as the hypothetical utopian 
solution - blue triangle) could be 
produced that is able to 
simultaneously correctly rank the 
known binding poses for both classes. 
Also shown is the result of a single 
objective optimisation for both 
classes, these scoring functions 
coincide with the best ranking 
functions for the individual classes 
derived from the NSGA-II 
optimisation.

Figure 2 - Ranking Function.

Figure 1 –
Descriptor 
Generation.
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A subset of the ChemScore2 (CS) scoring function terms 
are used (table 2). The scoring function employed in CS is 
typical of those used in docking; it consists of a series of 
terms, each having a coefficient and a calculated ligand-
protein interaction term. The sum of these terms is an 
approximation of ΔGbinding. In the case of CS the weight 
coefficients for each term were determined by multiple 
linear regression against complexes with known binding 
affinities.

7. Conclusions

• A single scoring function for docking - derived 
from regression or other single objective 
techniques - cannot perform well against all 
targets.

• Initial findings indicate clear contentions do exist 
in optimisation against different co-crystals.

• By applying a MOEA, it is demonstrated that 
customised scoring functions can be derived that 
are appropriate for either a particular protein or 
protein class.

• Further refinement of the protocol is required 
including the cross-docking of a diverse set of 
ligands to each co-crystal – better approximating 
the actual difficulty inherent in the docking 
problem.

Table 2 - ChemScore terms used in 
optimisation.

Co-crystal PDB id Class

1xm6 Phosphdiesterases

Nuclear receptors

Kinases

Serine Proteases

1sqn
1pmn

1oyt

Table 3 – Class membership of 
the four co-crystals used.

5. Results: Four Co-crystal Optimisation

Figure 4 - Scatter plot of scoring functions for a 
four co-crystal optimisation.

Here a custom implementation of the 
nondominated sorting genetic algorithm-II 
(NSGA-II) is employed6. The optimisation 
evolves a population of solutions by 
selection, mutation and recombination, 
each representing a set of scoring function 
coefficients. Each of the solutions are 
evaluated against the descriptors of every 
pose. All poses are then ordered by their 
relative score (figure 2). The multiobjective 
optimisation problem is then to maximise 
the rank position of the known ligand 
binding mode in every co-crystal. The 
output of the NSGA-II is the set of least 
worst solutions to this multiobjective 
ranking problem (figure 3).

Four co-crystals were selected as representatives of their respective protein class (table 3). A population of 100 solutions was evolved in 
40 generations of the NSGA-II algorithm to produce a non-dominated set as in figure 4. There were 401 poses (400 decoy + 1 binding) with 
a value of 400 being the best possible ranking for a scoring function, and 0 the poorest. 

Figure 3 - Approximation of the Pareto-
optimal set of scoring functions.
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The result of a single objective genetic algorithm (using a different scoring function combining both objectives) 
is shown in yellow. Note this solution represents a poor scoring function for both protein classes. This 
demonstrates that a single scoring function is unlikely to adequately score both classes.

Analysis: The curved 1xm6 and 1pmn (figure 4) plot indicates a trade-off front 
behaviour, good solutions for one are mutually exclusive of the other - no single 
function can be found to satisfy both. This behaviour is also observed clearly for 
1xm6 and 1oyt. However, 1sqn and 1oyt show complementary scoring functions, a 
cluster of good solutions for both is visible close to optimal. It is also observed that 
suboptimal solutions score equally as badly only for a limited range then show an 
independent, and more scattered, relationship. The 1pmn and 1sqn plot is highly 
scattered suggesting that scoring functions are independent of each other.


