Finding Cancer Growth Inhibitors using the Internet

Keith Davies Treweren Consultants

Summary

- Virtual HTS
 - CAN-DDO
 - Find-a-Drug
- Preliminary Results
- Secondary Virtual Screen

Blue Sky Objectives

- Reduce Development Failures
 - Real choice of leads candidates for follow-up
 - Better decisions
- Reduce Drug Discovery Research
 - Timescales
 - Costs

Pharmacophores

- Centre Types
 - H-bond Donor
 - H-bond Acceptor
 - Acid
 - Base
 - Positive Charge
 - Negative Charge
 - Aromatic Ring
 - Lipophile
 - Lewis Base
 - Lewis Acid
 - 2 User Definable

- Options
 - 3 or 4 Centre yypes
 - User definable bins
 - Occurrence frequency
- Output to file

Conformer Generation

- Modes
 - Systematic
 - Random
 - Sample
- Contact Check
 - VdW
 - CPK (0.6*VdW)

- Bond Rotations
 - 3 Single (sp3-sp3)
 - 2 Conjugated
 - 4 Crowded
 - 6 Alpha (sp3-sp2)

- 0 Amide (ie Off)
- 0 Ring (ie Off)

CAN-DDO Project

- Cancer Research Project Organised by
 - Oxford University
 - United Devices (www.ud.com)
- Uses THINK Software as a Screen-saver
- Funded by NFCR and Sponsored by Intel
- 16 Targets 3.5 Billion Molecules
- Largest Computational Chemistry Project

Virtual HTS

Cavity Identification

- Place Protein in 3-D Grid
- Remove Grid Points Inside Protein
- Remove Grid Points Inside 8 Å Sphere Positioned on the Grid Outside the Protein
- Binding Site
 - Minimum of 3 Grid Points
 - Minimum of 3 Residues

Centre Positions

Molecule Summary

- Reviewed
 - 1.4 Million Catalogue Molecules
 - 1 177 Million Library Molecules
- Drug-like
 - 0.4 Million Catalogue Molecules
 - 35 Million Library Molecules
- De Novo Derivatives
 - 100 for Each Molecule
 - Automatically Filtered
- Total of 3.5 Billion Molecules

De Novo Structure Generation

Find-a-Drug

Enhanced ChemScore

- X,Y,Z position, orientation and torsions refined
- Ranking Hits Based on ChemScore Equation

 $\Delta G = \Delta G_0 + \Delta G_{hbond} * N_{hbond} + \Delta G_{lipo} * N_{lipo} + \Delta G_{bad} * N_{bad} + \Delta G_{rot} * N_{rot} + E$ where

 $\Delta G_0 \Delta G_{hbond} \Delta G_{lipo} \Delta G_{bad} \Delta G_{rot}$ are constants (-5.48;-3.34; -0.117; 0.058; 2.56) N_{hbond} is the number of qualifying interactions (on geometric criteria) N_{lipo} is the number of lipohilic contacts

 N_{bad} is the number of lipohilic-hydrophilic contacts (extension)

N_{rot} is the number of frozen rotatable bonds in the ligand

E is the VdW interaction energy and ligand torsional energy (extension)

Performance

- THINK 1.03 (used for CAN-DDO)
 - 42,000,000,000 molecules
 - 126,000 years
 - 900 molecules per CPU day (excluding redundancy)
- THINK 1.24b
 - Optimised with assistance from Intel
 - Up to 100 times faster
 - More centres useful for larger sites
 - Refinement of docked geometry
 - About **500,000** molecules per 3GHz CPU day

Validation

- Reproduce Ligand-Protein Crystal Structures
 - RMS deviation of non-H atoms
 - Docking score
- Dock Actives
 - Used for developing scoring functions
- Prediction
 - Enrichment over random
 - Percentage of false positives

Selection Criteria

- Possible Kinases Cancer Targets
- X-ray Crystal Structures in PDB
- Resolution (1.9-2.8)
- All Atoms (1IAN Cα only)
- Ligand Flexibility <=10 Rotatable Bonds (excludes 1GAG, 1IR3, 2FGI, 5TMP, 1LCK)
- 21 Structures Processed

PDB ID	Score	RMS	Notes
2KI5	-52.2 (-39.8)	5.88 (5.32)	3 A S
1QHI	-78.4 (-73.5)	1.03 (0.98)	3 A
1STC	-105.7	0.59	2
1E8Z	-86.8	1.77	2
1AQ1	-87.0	0.89	2
1AGW	-60.0 (-53.9)	3.45 (0.65)	2
1FGI	-83.8 (-69.4)	0.56 (0.52)	2
1FVV	-81.3 (-73.3)	0.61 (0.56)	3
1FVT	-69.8 (-58.5)	1.44 (0.72)	3

- A All Site Points
- S Single Bond Increment
- C Conjugated Bond Increment
- 2 Two Centre Fit
- 3 Three Centre Fit
- W Water Site Point

PDB ID	Score	RMS	Notes
1DI8	-55.2 (-52.9)	0.98 (0.70)	2 W
1DI9	-39.5	1.97	2 W C
1YDR	-60.1 (-43.9)	3.00 (2.33)	2
1YDS	-55.5 (-48.1)	2.80 (0.76)	2 W
1YDT	-36.8	2.86	2
1PME	-28.4	1.30	3 W*2 C
4ERK	-17.9 (-11.8)	7.83 (3.33)	2
1IEP	-90.6 (-84.8)	0.73 (0.69)	3
1FPU	-47.1	0.75	3 C
1DM2	-54.0	0.61	3
1CKP	-43.2 (-43.0)	1.99 (1.10)	2 C
1QCF	-58.8	1.33	2

Validations

- Trace Mode
 - Drug-like Molecules
 - Number of Interactions in "Pharmacophore"
 - Volume, Area and Accessibility Constraints
 - Conformational Increments
 - Contacts & Refinement Threshold
- Observations
 - Most Ligand-Protein Crystal Complexes Validate
 - Best Ligands Score <-50kJ/mol

Configuration Options

- Reproducing Known Complexes
 - Slow and rigorous
 - Sometimes < 4 centre</p>
 - Aim for RMS < 2.0 and interaction geometry
- Virtual HTS
 - Fast and more approximate
 - 4 Centres for greater selectivity
 - Accept some omissions
 - Avoid false positives

Find-a-Drug Cancer Results

PDB	Protein	Number	Number
Code		Tested	Active
1FLT	VEGFr	3	3
821P	RAS	48	4
1C1Y	RAF	3	1
1FGI	FGFr-1	44	6
1E7U	PI3K	47	5

Computational Issues

- Motivation and Fabrication
 - Points awarded to measure member contribution
 - Encourages fabrication of results
- Use Redundancy to Identify
 - Erroneous results
 - Compiler dependency
- CPU Dependency
 - Rounding errors
 - Overclocking

What use are >1,000,000 Hits?

- More Choice Means Better Decisions
- Analyse and Select by
 - Families
 - Clustering
 - Ligand-Protein Interactions
 - Medicinal Chemistry Rules
 - Binding Mode
 - Snugness of Fit

Clustering

- Advantages
 - Idiot Proof
 - Functional Groups
 - Provides Representatives
- Disadvantages
 - Approximate for large hit lists
 - No Receptor or Synthetic Justification

Molecules	
	Clusters

Observations of Clustering

- All Molecules in a Cluster must be Similar
- Not all Similar Molecules in the same Cluster
- Derivatives are not necessarily Similar
- Similarity does not relate to Synthetic Route
- Clustering is "Not a thinking man's choice"

Medicinal Chemistry Rules

- Impractical to Review 000's of Hits
- Synthetic Knowledge and Experience
 - Chirality
 - Synthetic difficulty
 - Poor *De Novo s*uggestions
 - Additional toxicity and metabolism alerts
- Select Leads from Hits
- Need Families not Lone Actives

Binding Mode

- Defined by Pharmacophores
- List of Interacting Residues
 - Ligand atoms mapped by to protein atoms
 - Serial numbers in hits file
- Favour Hits which Interact with the Same Residues as Known Actives

Hole Count

- Measure of Snugness of Fit
- Use 1 Angstrom Grid
- Calculate Difference of
 - Number of Holes in Free Protein
 - Number of Holes in Ligand-Protein Complex
- Hole Count is Negative for Snug Fits

Secondary Virtual Screen

- Consider Rich Families Only
- Rejection by
 - Chiral Centre Count
 - Unacceptable Functional Groups
 - Extended Property Ranges
- Numerical Combination of
 - Docking Score
 - Pharmacophore Overlap
 - Hole Count
- Use False Positives as a Test Set

Find-a-Drug Progress

- Virtual HTS
- Secondary Virtual Screen

- Future Possibilities
 - P450 Virtual Screen
 - Pharmacophores

FGFr-1 Progress (1FGI)

- Virtual HTS
 - 13.6% True Positives (6/44)
- Enrichment
 - 125 (6 actives+2/977 from ChemHTS-1)
 - 512 (6 actives+13/9729 from ChemHTS-1)
- Secondary Virtual Screen
 - 29.4% True Positives (5/17)